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Natural gas is poised to enter a golden age, but this future 
hinges critically on the successful development of the 

world’s vast unconventional gas resources. North American 
experience shows unconventional gas – notably shale gas – 

can be exploited economically. Many countries are lining up to 
emulate this success.

But some governments are hesitant, or even actively opposed. 
They are responding to public concerns that production might 

involve unacceptable environmental and social damage.

This report, in the World Energy Outlook series, treats these 
aspirations and anxieties with equal seriousness. It features two 
new cases: a Golden Rules Case, in which the highest practicable 
standards are adopted, gaining industry a “social licence to operate”; 
and its counterpart, in which the tide turns against unconventional 
gas as constraints prove too difficult to overcome.

The report:

�� �Describes the unconventional gas resource and what is involved 
in exploiting it.

�� �Identifies the key environmental and social risks and how they 
can be addressed.

�� �Suggests the Golden Rules necessary to realise the economic and 
energy security benefits while meeting public concerns.

�� �Spells out the implications of compliance with these rules for 
governments and industry, including on development costs.

�� �Assesses the impact of the two cases on global gas trade 
patterns and pricing, energy security and climate change.

For more information, and the free download of this report, 
please visit: www.worldenergyoutlook.org
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Executive Summary 9

Executive Summary

Natural gas is poised to enter a golden age, but will do so only if a significant proportion 
of the world’s vast resources of unconventional gas – shale gas, tight gas and coalbed 
methane – can be developed profitably and in an environmentally acceptable manner. 
Advances in upstream technology have led to a surge in the production of unconventional 
gas in North America in recent years, holding out the prospect of further increases in 
production there and the emergence of a large-scale unconventional gas industry in other 
parts of the world, where sizeable resources are known to exist. The boost that this would 
give to gas supply would bring a number of benefits in the form of greater energy diversity 
and more secure supply in those countries that rely on imports to meet their gas needs, as 
well as global benefits in the form of reduced energy costs. 

Yet a bright future for unconventional gas is far from assured: numerous hurdles need 
to be overcome, not least the social and environmental concerns associated with its 
extraction. Producing unconventional gas is an intensive industrial process, generally 
imposing a larger environmental footprint than conventional gas development. More wells 
are often needed and techniques such as hydraulic fracturing are usually required to boost 
the flow of gas from the well. The scale of development can have major implications for 
local communities, land use and water resources. Serious hazards, including the potential 
for air pollution and for contamination of surface and groundwater, must be successfully 
addressed. Greenhouse-gas emissions must be minimised both at the point of production 
and throughout the entire natural gas supply chain. Improperly addressed, these concerns 
threaten to curb, if not halt, the development of unconventional resources.

The technologies and know-how exist for unconventional gas to be produced in a way 
that satisfactorily meets these challenges, but a continuous drive from governments and 
industry to improve performance is required if public confidence is to be maintained 
or earned. The industry needs to commit to apply the highest practicable environmental 
and social standards at all stages of the development process. Governments need to 
devise appropriate regulatory regimes, based on sound science and high-quality data, with 
sufficient compliance staff and guaranteed public access to information. Although there is 
a range of other factors that will affect the development of unconventional gas resources, 
varying between different countries, our judgement is that there is a critical link between 
the way that governments and industry respond to these social and environmental 
challenges and the prospects for unconventional gas production. 

009-12_Executive Summary.indd   9 14/05/2012   12:36:45
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We have developed a set of “Golden Rules”, suggesting principles that can allow policy-
makers, regulators, operators and others to address these environmental and social 
impacts.1 We have called them Golden Rules because their application can bring a level of 
environmental performance and public acceptance that can maintain or earn the industry 
a “social licence to operate” within a given jurisdiction, paving the way for the widespread 
development of unconventional gas resources on a large scale, boosting overall gas supply 
and making the golden age of gas a reality. 

The Golden Rules underline that full transparency, measuring and monitoring of 
environmental impacts and engagement with local communities are critical to addressing 
public concerns. Careful choice of drilling sites can reduce the above-ground impacts and 
most effectively target the productive areas, while minimising any risk of earthquakes or of 
fluids passing between geological strata. Leaks from wells into aquifers can be prevented 
by high standards of well design, construction and integrity testing. Rigorous assessment 
and monitoring of water requirements (for shale and tight gas), of the quality of produced 
water (for coalbed methane) and of waste water for all types of unconventional gas can 
ensure informed and stringent decisions about water handling and disposal. Production-
related emissions of local pollutants and greenhouse-gas emissions can be reduced by 
investments to eliminate venting and flaring during the well-completion phase. 

We estimate that applying the Golden Rules could increase the overall financial cost 
of development a typical shale-gas well by an estimated 7%. However, for a larger 
development project with multiple wells, additional investment in measures to mitigate 
environmental impacts may be offset by lower operating costs.

In our Golden Rules Case, we assume that the conditions are in place, including 
approaches to unconventional gas development consistent with the Golden Rules, to 
allow for a continued global expansion of gas supply from unconventional resources, 
with far-reaching consequences for global energy markets. Greater availability of gas has 
a strong moderating impact on gas prices and, as a result, global gas demand rises by more 
than 50% between 2010 and 2035. The increase in demand for gas is equal to the growth 
coming from coal, oil and nuclear combined, and ahead of the growth in renewables. The 
share of gas in the global energy mix reaches 25% in 2035, overtaking coal to become the 
second-largest primary energy source after oil. 

1.  Consultations with a range of stakeholders when developing these Golden Rules included a high-
level workshop held in Warsaw on 7 March 2012, which was organised by the IEA, hosted by the 
Polish Ministry of Economy and co-hosted by the Mexican Ministry of Energy. In addition to the input 
received during this workshop, we have drawn upon the extensive work in this area undertaken by 
many governments, non-governmental and academic organisations, and industry associations.
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Production of unconventional gas, primarily shale gas, more than triples in the Golden 
Rules Case to 1.6  trillion cubic metres in 2035. This accounts for nearly two-thirds of 
incremental gas supply over the period to 2035, and the share of unconventional gas in total 
gas output rises from 14% today to 32% in 2035. Most of the increase comes after 2020, 
reflecting the time needed for new producing countries to establish a commercial industry. 
The largest producers of unconventional gas over the projection period are the United 
States, which moves ahead of Russia as the largest global natural gas producer, and China, 
whose large unconventional resource base allows for very rapid growth in unconventional 
production starting towards 2020. There are also large increases in Australia, India, Canada 
and Indonesia. Unconventional gas production in the European Union, led by Poland, is 
sufficient after 2020 to offset continued decline in conventional output. 

Global investment in unconventional production constitutes 40% of the $6.9 trillion (in 
year-2010 dollars) required for cumulative upstream gas investment in the Golden Rules 
Case. Countries that were net importers of gas in 2010 (including the United States) 
account for more than three-quarters of total unconventional upstream investment, 
gaining the wider economic benefits associated with improved energy trade balances and 
lower energy prices. The investment reflects the high number of wells required: output at 
the levels anticipated in the Golden Rules Case would require more than one million new 
unconventional gas wells worldwide between now and 2035, twice the total number of gas 
wells currently producing in the United States. 

The Golden Rules Case sees gas supply from a more diverse mix of sources of gas in most 
markets, suggesting growing confidence in the adequacy, reliability and affordability of 
natural gas. The developments having most impact on global gas markets and security are 
the increasing levels of unconventional gas production in China and the United States, the 
former because of the way that it slows the growth in Chinese import needs and the latter 
because it allows for gas exports from North America. These developments in tandem 
increase the volume of gas, particularly liquefied natural gas (LNG), looking for markets in 
the period after 2020, which stimulates the development of more liquid and competitive 
international markets. The share of Russia and countries in the Middle East in international 
gas trade declines in the Golden Rules Case from around 45% in 2010 to 35% in 2035, 
although their gas exports increase by 20% over the same period. 

In a Low Unconventional Case, we assume that – primarily because of a lack of public 
acceptance – only a small share of the unconventional gas resource base is accessible 
for development. As a result, unconventional gas production in aggregate rises only 
slightly above current levels by 2035. The competitive position of gas in the global fuel mix 
deteriorates as a result of lower availability and higher prices, and the share of gas in global 
energy use increases only slightly, from 21% in 2010 to 22% in 2035, remaining well behind 
that of coal. The volume of inter-regional trade is higher than in the Golden Rules Case and 
some patterns of trade are reversed, with North America requiring significant quantities of 
imported LNG. The Low Unconventional Case reinforces the preeminent position in global 
supply of the main conventional gas resource-holders. 
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Energy-related CO2 emissions are 1.3% higher in the Low Unconventional Case than in 
the Golden Rules Case. Although the forces driving the Low Unconventional Case are 
led by environmental concerns, this offsets any claim that a reduction in unconventional 
gas output brings net environmental gains. Nonetheless, greater reliance on natural gas 
alone cannot realise the international goal of limiting the long-term increase in the global 
mean temperature to two degrees Celsius above pre-industrial levels. Achieving this 
climate target will require a much more substantial shift in global energy use. Anchoring 
unconventional gas development in a broader energy policy framework that embraces 
greater improvements in energy efficiency, more concerted efforts to deploy low-carbon 
energy sources and broad application of new low-carbon technologies, including carbon 
capture and storage, would help to allay the fear that investment in unconventional gas 
comes at their expense.
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The Golden Rules

Measure, disclose and engage

	 Integrate engagement with local communities, residents and other stakeholders 
into each phase of a development starting prior to exploration; provide sufficient 
opportunity for comment on plans, operations and performance; listen to 
concerns and respond appropriately and promptly. 

	 Establish baselines for key environmental indicators, such as groundwater quality, 
prior to commencing activity, with continued monitoring during operations. 

	 Measure and disclose operational data on water use, on the volumes and 
characteristics of waste water and on methane and other air emissions, alongside 
full, mandatory disclosure of fracturing fluid additives and volumes. 

	 Minimise disruption during operations, taking a broad view of social and 
environmental responsibilities, and ensure that economic benefits are also felt by 
local communities. 

Watch where you drill

	 Choose well sites so as to minimise impacts on the local community, heritage, 
existing land use, individual livelihoods and ecology. 

	 Properly survey the geology of the area to make smart decisions about where to 
drill and where to hydraulically fracture: assess the risk that deep faults or other 
geological features could generate earthquakes or permit fluids to pass between 
geological strata. 

	 Monitor to ensure that hydraulic fractures do not extend beyond the gas-
producing formations. 

Isolate wells and prevent leaks

	 Put in place robust rules on well design, construction, cementing and integrity 
testing as part of a general performance standard that gas bearing formations 
must be completely isolated from other strata penetrated by the well, in particular 
freshwater aquifers. 

	 Consider appropriate minimum-depth limitations on hydraulic fracturing to 
underpin public confidence that this operation takes place only well away from 
the water table. 

	 Take action to prevent and contain surface spills and leaks from wells, and to 
ensure that any waste fluids and solids are disposed of properly. 

013-14_The golden rules.indd   13 14/05/2012   12:37:04
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Treat water responsibly

	 Reduce freshwater use by improving operational efficiency; reuse or recycle, 
wherever practicable, to reduce the burden on local water resources. 

	 Store and dispose of produced and waste water safely. 

	 Minimise use of chemical additives and promote the development and use of 
more environmentally benign alternatives. 

Eliminate venting, minimise flaring and other emissions

	 Target zero venting and minimal flaring of natural gas during well completion and 
seek to reduce fugitive and vented greenhouse-gas emissions during the entire 
productive life of a well. 

	 Minimise air pollution from vehicles, drilling rig engines, pump engines and 
compressors. 

Be ready to think big

	 Seek opportunities for realising the economies of scale and co-ordinated 
development of local infrastructure that can reduce environmental impacts. 

	 Take into account the cumulative and regional effects of multiple drilling, 
production and delivery activities on the environment, notably on water use and 
disposal, land use, air quality, traffic and noise. 

Ensure a consistently high level of environmental performance

	 Ensure that anticipated levels of unconventional gas output are matched by 
commensurate resources and political backing for robust regulatory regimes at 
the appropriate levels, sufficient permitting and compliance staff, and reliable 
public information. 

	 Find an appropriate balance in policy-making between prescriptive regulation and 
performance-based regulation in order to guarantee high operational standards 
while also promoting innovation and technological improvement. 

	 Ensure that emergency response plans are robust and match the scale of risk. 

	 Pursue continuous improvement of regulations and operating practices. 

	 Recognise the case for independent evaluation and verification of environmental 
performance. 
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Introduction

Technology is opening up possibilities for unconventional gas to play a major role in the 
future global energy mix, a development that would ease concerns about the reliability, 
affordability and security of energy supply. In North America, production of unconventional 
gas – notably shale gas – has risen rapidly in recent years and is expected to dominate 
growth in overall US natural gas production in the coming years and decades. Naturally, 
there is keen interest in replicating this success in other parts of the world, where sizeable 
resources of unconventional gas are known to exist. This could give a major boost to gas 
supply worldwide and help take us into a “Golden Age of Gas” – the subject of a special 
WEO report released last year (IEA, 2011) (Box). 

Box ⊳  Linking the Golden Rules to a “Golden Age of Gas”

The IEA released an analysis in June 2011 whose title asked the question “Are We 
Entering a Golden Age of Gas?” (IEA, 2011). How does this report link back to that 
analysis? 

The Golden Age of Gas Scenario (GAS Scenario) in 2011 built a positive outlook for 
the future role of natural gas on four main pillars: more ambitious assumptions 
about gas use in China; greater use of natural gas in transportation; an assumption 
of slower growth in global nuclear power capacity; and a more optimistic outlook 
for gas supply – primarily though the availability of additional unconventional gas 
supplies at relatively low cost. In the GAS Scenario, as a result, natural gas increased 
its role in the future global energy mix from 21% to 25% over the period to 2035.

However, the question mark in the title of this publication was not accidental. It 
reflected continued uncertainties over the future of natural gas, in particular those 
connected with the potential for growth in unconventional gas supply. The present 
analysis zooms in on the environmental impacts of unconventional gas supply, 
how they are being, and might be, addressed and what the consequences might 
be. It should therefore be understood as a more detailed examination of a key pre-
condition for a golden age of gas. 

A range of factors will affect the pace of development of this relatively new industry over 
the coming decades. In our judgement, a key constraint is that unconventional gas does 
not yet enjoy, in most places, the degree of societal acceptance that it will require in order 
to flourish. Without a general, sustained and successful effort from both governments 
and operators to address the environmental and social concerns that have arisen, it may 
be impossible to convince the public that, despite the undoubted potential benefits, the 
impact and risks of unconventional gas development are acceptably small. The IEA offers 
this special report as a contribution to the solution of this dilemma. The objective is to 
suggest what might be required to enable the industry to maintain or earn a “social licence 
to operate”.
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In Chapter 1 of this special report, we analyse the specific characteristics of each type of 
unconventional gas development and their environmental and social impacts, examining 
the technologies and their associated risks, why they have raised public anxiety and why 
and how they require special attention from policy-makers, regulators and industry. This 
chapter develops a set of “Golden Rules”, the application of which would reduce the 
impact of unconventional gas developments on land and water use, on the risk of water 
contamination, and on methane and other air emissions. It also analyses the implications 
of compliance with the Golden Rules for governments and for industry.

In Chapter 2, we set out the results of two sets of projections of future energy demand, 
supply and energy-related CO2 emissions, which explore the potential impact of 
unconventional gas resources on energy markets. The first of these, to which the main 
part of this chapter is devoted, is a Golden Rules Case, which assumes that the conditions 
are put in place to allow for a continued expansion of gas supply from unconventional gas 
resources, including the effective application of the Golden Rules. This situation allows 
unconventional output to expand not only in North America but also in other countries 
around the world with major resources. A Low Unconventional Case, examined at the 
end of this chapter, considers the opposite turn of events, in which Golden Rules are not 
observed, opposition to unconventional gas hardens and the constraints prove too difficult 
to overcome.

Chapter 3 takes a closer look at unconventional gas in four key regions and countries: North 
America (United States, Canada and Mexico), China, Europe and Australia. The prospect 
of increased unconventional gas production is prompting many countries to review their 
regulatory frameworks to accommodate (or, in some cases, to restrict) the development 
of these resources. This chapter provides an overview of the main debates and challenges 
around unconventional production in the selected countries and regions, presented 
together with our projections for future output.
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Chapter 1

Addressing environmental risks
Why do we need “Golden Rules”?

Highl ights

•	 Unconventional gas resources are trapped in very tight or low permeability rock and 
the effort required to extract them is greater than for conventional resources. This 
means higher intensity of drilling, entailing more industrial activity and disruption 
above ground. Producing gas from unconventional formations in many cases involves 
the use of hydraulic fracturing to boost the flow of gas from the well.

•	 The environmental and social hazards related to these and other features of 
unconventional gas development have generated keen public anxiety in many places. 
Means are available to address these concerns. “Golden Rules”, as developed here, 
provide principles that can guide policy-makers, regulators, operators and other 
stakeholders on how best to reconcile their interests.

•	 Critical elements are: full transparency, measuring, monitoring and controlling 
environmental impacts; and early and sustained engagement. Careful choice of drilling 
sites can reduce the above-ground impacts and most effectively target the productive 
areas, while minimising any risk of earthquakes or of fluids passing between geological 
strata.

•	 Sound management of water resources is at the heart of the Golden Rules. Alongside 
robust rules on well design, construction, cementing and integrity testing to prevent 
leaks from the well into aquifers, this requires rigorous assessment, monitoring and 
handling of water requirements (for shale and tight gas), of the quality of produced 
water (for coalbed methane) and of waste water (in all cases).

•	 Unconventional gas has higher production-related greenhouse-gas emissions than 
conventional gas, but the difference can be reduced and emissions of other pollutants 
lowered by eliminating venting and minimising flaring during the well completion phase. 
Releases of methane, wherever they occur in the gas supply chain, are particularly 
damaging, given its potency as a greenhouse gas.

•	 The potential environmental impacts and the scale of unconventional gas development 
make it essential for policy-makers to ensure that effective and balanced regulation is 
in place, based on sound science and high-quality data, and that adequate resources 
are available for enforcement.

•	 Operators have to perform to the highest standards in order to win and retain the “social 
licence to operate”. Application of the Golden Rules does affect costs, with an estimated 
7% increase for a typical individual shale gas well. However, when considered across a 
complete licensing area, additional investment in measures to mitigate environmental 
impact can be offset in many cases by lower operating costs.
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The environmental impact of unconventional gas production
Although known about for decades, the importance of global unconventional gas resources 
and their full extent has only recently been appreciated. Allowing for the uncertainties in 
the data, stemming, in part, from difficulties in distinguishing and categorising different 
types of gas (Box 1.1), we estimate that the remaining technically recoverable resources 
of unconventional gas worldwide approach the size of remaining conventional resources 
(which are 420 trillion cubic metres [tcm]). Remaining technically recoverable resources of 
shale gas are estimated to amount to 208 tcm, tight gas to 76 tcm and coalbed methane to 
47 tcm. The economic and political significance of these unconventional resources lies not 
just in their size but also in their wide geographical distribution, which is in marked contrast 
to the concentration of conventional resources.1 Availability of gas from a diverse range of 
sources would underpin confidence in gas as a secure and reliable source of energy.

Box 1.1 ⊳ � Unconventional gas resources

Unconventional gas refers to a part of the gas resource base that has traditionally been 
considered difficult or costly to produce. In this report, we focus on the three main 
categories of unconventional gas: 

•	 Shale gas is natural gas contained within a commonly occurring rock classified as shale. 
Shale formations are characterised by low permeability, with more limited ability of 
gas to flow through the rock than is the case with a conventional reservoir. These 
formations are often rich in organic matter and, unlike most hydrocarbon reservoirs, 
are typically the original source of the gas, i.e. shale gas is gas that has remained 
trapped in, or close to, its source rock.

•	 Coalbed methane, also known as coal seam gas in Australia, is natural gas contained 
in coalbeds. Although extraction of coalbed methane was initially undertaken to make 
mines safer, it is now typically produced from non-mineable coal seams. 

•	 Tight gas2 is a general term for natural gas found in low permeability formations. 
Generally, we classify as tight gas those low permeability gas reservoirs that cannot 
produce economically without the use of technologies to stimulate flow of the gas 
towards the well, such as hydraulic fracturing.

Although the development cycle for unconventional gas and the technologies used in its 
production have much in common with those used in other parts of the upstream industry, 
unconventional gas developments do have some distinctive features and requirements, 
particularly in relation to the perceived higher risk of environmental damage and adverse 

1.  The extent and distribution of recoverable resources of unconventional gas is discussed in more detail in 
Chapter 2.
2.  Tight gas is often a poorly defined category with no clear boundary between tight and conventional, nor 
between tight gas and shale gas.
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1
social impacts. This helps to explain why the issue of unconventional gas exploitation has 
generated so much controversy.

This chapter addresses these issues by examining in some depth what is involved in 
exploiting each category of unconventional gas and the associated hazards. It then proposes 
a set of principles, the “Golden Rules”, applicable to future operations in this sector. The 
objective is to define the conditions which might enable the industry to gain or retain a 
“social licence to operate”. The consequences for the energy sector of securing such an 
outcome are discussed in Chapters 2 and 3, together with the possible consequences of 
failing to do so.

The main reason for the potentially larger environmental impact of unconventional gas 
operations is the nature of the resources themselves: unconventional resources are less 
concentrated than conventional deposits and do not give themselves up easily. They are 
difficult to extract because they are trapped in very tight or low permeability rock that 
impedes their flow. Since the resources are more diffuse and difficult to produce, the scale 
of the industrial operation required for a given volume of unconventional output is much 
larger than for conventional production. This means that drilling and production activities 
can be considerably more invasive, involving a generally larger environmental footprint. 

One feature of the greater scale of operations required to extract unconventional gas is 
the need for more wells. Whereas onshore conventional fields might require less than 
one well per ten square kilometres, unconventional fields might need more than one well 
per square kilometre (km2), significantly intensifying the impact of drilling and completion 
activities on the environment and local residents.3 A satellite image from Johnson County 
in Texas, United States illustrates this point, showing the density of well sites producing 
from the Barnett shale (Figure 1.1). This image highlights 37 well sites in an area of around 
20  km2, with each well site potentially having more than one well. Another important 
factor is the need for more complex and intensive preparation for production. While 
hydraulic fracturing is already used on occasions to stimulate conventional reservoirs, tight 
gas and shale gas developments almost always require the use of this technique in order to 
generate adequate flow rates into the well. The same technique is also often used, albeit 
less frequently, to produce coalbed methane. The associated use and release of water gives 
rise to a number of environmental concerns, including depletion of freshwater resources 
and possible contamination of surface water and aquifers.

3.  It should be noted that conventional gas fields in mature areas, such as onshore United States or Canada, 
often have well densities (number of wells per unit area) comparable to those of unconventional gas. However, 
burgeoning unconventional gas production today tends to replace production that would have come from 
offshore locations or countries rich in conventional gas, such as Russia or Qatar, in which the well densities are 
much smaller.
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Figure 1.1 ⊳ � Drilling intensity in Johnson County, Texas

1 km

Source: © 2012 Google, DigitalGlobe, GeoEye, Texas Orthoimagery Program, USDA Farm, Farm Service 
Agency source. Google Maps, http://g.co/maps/j9xws, with well sites highlighted.

The production of unconventional gas also contributes to the atmospheric concentration 
of greenhouse gases and affects local air quality. In some circumstances, unconventional 
gas production can result in higher airborne emissions of methane, a potent greenhouse 
gas, of volatile organic compounds (VOCs) that contribute to smog formation, and of 
carbon dioxide (CO2) (from greater use of energy in the production process, compared 
with conventional production). Just how much greater these risks may be is uncertain: 
it depends critically on the way operations are carried out. On the other hand, there are 
potential net benefits from unconventional gas production, to the extent that, having been 
produced and transported to exacting environmental standards, it leads to greater use of 
gas instead of more carbon-intensive coal and oil. 

In addition to the smaller recoverable hydrocarbon content per unit of land, unconventional 
developments tend to extend across much larger geographic areas. The Marcellus Shale in 
the United States covers more than 250 000 km2, which is about ten times larger than the 
Hugoton Natural Gas Area in Kansas – the country’s largest conventional gas producing 
zone. Moreover, areas with high unconventional potential are not always those with 
a strong or recent tradition of oil and gas industry activity; they are not necessarily rich 
in conventional hydrocarbons and in some cases there may have been little or no recent 
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hydrocarbon production (and none expected). This tends to exacerbate the problem of 
public acceptance.

Shale and tight gas developments

Characteristics of the resource

By contrast to conventional gas reservoirs, shale gas reservoirs (Box  1.2) have very low 
permeability due to the fine-grained nature of the original sediments (gas does not flow 
easily out of the rock), fairly low porosities (relatively few spaces for the gas to be stored, 
generally less than 10% of the total volume), and low recovery rates (because the gas can 
be trapped in disconnected spaces within the rock or stuck to its surface). The last two 
factors (low porosity and low recovery) are responsible for the fact that the volume of 
recoverable hydrocarbons per square kilometre of area at the surface is usually an order 
of magnitude smaller than for conventional gas. Low permeability is responsible for shale 
gas requiring specific technologies, such as hydraulic fracturing, to achieve commercial 
flow rates.

Tight gas reservoirs originate in the same way as conventional gas reservoirs: the rock into 
which the gas migrates after being expelled from the source rock just happens to be of very 
low permeability. As a result, tight gas reservoirs also require special techniques to achieve 
commercial flow rates. On the other hand, they tend to have better recovery factors than 
shale gas deposits and, therefore, higher density of recoverable hydrocarbons per unit of 
surface area.

Box 1.2 ⊳ � What are shales and shale gas?

Shales are geological rock formations rich in clays, typically derived from fine sediments, 
deposited in fairly quiet environments at the bottom of seas or lakes, having then 
been buried over the course of millions of years. When a significant amount of organic 
matter has been deposited with the sediments, the shale rock can contain organic 
solid material called kerogen. If the rock has been heated up to sufficient temperatures 
during its burial history, part of the kerogen will have been transformed into oil or 
gas (or a mixture of both), depending on the temperature conditions in the rock. 
This transformation typically increases pressure within the rock, resulting in part 
of the oil and gas being expelled from the shale and migrating upwards into other 
rock formations, where it forms conventional oil and gas reservoirs. The shales are 
the source rock for the oil and gas found in such conventional reservoirs. Some, or 
occasionally all, of the oil and gas formed in the shale can remain trapped there, thus 
forming shale gas or light tight oil reservoirs.4

4

4.  Terminology in this area remains to be standardised (see Box 1.1). Previous WEOs have classified light tight 
oil from shales as conventional oil. Note that the term light tight oil is preferred to that of shale oil, as the latter 
can bring confusion with oil shales, which are kerogen-rich shales that can be mined and heated to produce oil 
(IEA, 2010; IEA, 2011a).
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Shales are ubiquitous in sedimentary basins: they typically form about 80% of what a well 
will drill through. As a result, the main organic-rich shales have already been identified in 
most regions of the world. Their depths vary from near surface to several thousand metres 
underground, while their thickness varies from just a few metres to several hundred.5 Often, 
enough is known about the geological history to infer which shales are likely to contain 
gas (or oil, or a mixture of both). In that sense there is no real “exploration” required for 
shale gas. However, the amount of gas present and particularly the amount of gas that 
can be recovered technically and economically cannot be known until a number of wells 
have been drilled and tested. Each shale formation has different geological characteristics 
that affect the way gas can be produced, the technologies needed and the economics of 
production.6 Different parts of the (generally large) shale deposits will also have different 
characteristics: small “sweet spots” or “core areas” may provide much better production 
than the rest of the play, often because of the presence of natural fractures that enhance 
permeability. The amount of natural gas liquids (NGLs) present in the gas can also vary 
considerably, with important implications for the economics of production. While most 
dry gas plays in the United States are probably uneconomic at the current low natural gas 
prices, plays with significant liquid content can be produced for the value of the liquids only 
(the market value of NGLs is correlated with oil prices, rather than gas prices), making gas 
an essentially free by-product.

Well construction7

The drilling phase is the most visible and disruptive in any oil and gas development – 
particularly so in the case of shale gas or tight gas because of the larger number of wells 
required. On land, a drilling rig, associated equipment and pits to store drilling fluids and 
waste typically occupy an area of 100  metres by 100  metres (the well site). Setting up 
drilling in a new location might involve between 100 and 200 truck movements to deliver 
all the equipment, while further truck movements will be required to deliver supplies 
during drilling and completion of the well. 

Each well site needs to be chosen taking account not only of the subsurface geology, but 
also of a range of other concerns, including proximity to populated areas and existing 
infrastructure, the local ecology, water availability and disposal options, and seasonal 
restrictions related to climate or wildlife concerns. In North America, there has recently 

5.  Thin shales are generally considered as not exploitable. Depth can cut both ways: shallower shales require 
shallower, i.e. cheaper, wells, but deeper shales have higher pressures, which increases the areal density of 
recoverable gas (which is measured at surface conditions, while the gas in the shale is compressed by the 
formation pressure). 
6.  For example, horizontal wells with multi-stage hydraulic fracturing have been pivotal to the economic success 
of shale gas in the United States, while in Argentina, YPF has recently reported successful tests with vertical wells 
with only three or four hydraulic fractures (YPF, 2012).
7.  The construction of a well to access unconventional gas deposits is divided into two phases: the drilling 
phase, where the hole is drilled to its target depth in sections that are secured with metal casing and cement; 
and the completion phase, where the cemented casing across the reservoir is perforated and the reservoir 
stimulated (generally by hydraulic fracturing) in order to start the production of hydrocarbons.
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been a move towards drilling multiple wells from a single site, or pad, in order to limit the 
amount of disruption and thereby the overall environmental impact of well construction.8 
In 2011, according to industry sources, around 30% of all new shale and tight gas wells in 
the United States and Canada were multiple wells drilled from pads.

Once drilling starts, it is generally a 24-hour-per-day operation, creating noise and fumes 
from diesel generators, requiring lights at night and creating a regular stream of truck 
movements during mobilisation/demobilisation periods. Drilling operations can take 
anything from just a few days to several months, depending on the depth of the well and 
type of rock encountered. As the drill bit bores through the rock, drilling fluid known as 
“mud” is circulated through the wellbore in order, among other tasks, to control pressure 
in the well and remove cuttings created by the drill bit from the well. This lubricating “mud” 
consists of a base fluid, such as water or oil, mixed with salts and solid particles to increase 
its density and a variety of chemical additives. Mud is stored either in mobile containers 
or in open pits which are dug into the ground and lined with impermeable material. The 
volume of material in the pits needs to be monitored and contained to prevent leaks or 
spills. A drilling rig might have several hundred tonnes of mud in use at any one time, 
which creates a large demand for supplies. Once used, the mud must be either recycled 
or disposed of safely. Rock cuttings recovered from the mud during the drilling process 
amount to between 100 and 500 tonnes per well, depending on the depth. These, too, 
need to be disposed of in an environmentally acceptable fashion.

A combination of steel casing and cement in the well (Figure  1.2) provides an essential 
barrier to ensure that high-pressure gas or liquids from deeper down cannot escape into 
shallower rock formations or water aquifers. This barrier has to be designed to withstand 
the cycles of stress it will endure during the subsequent hydraulic fracturing, without 
suffering any cracks. The design aspects that are most important to ensure a leak-free well 
include the drilling of the well bore to specification (without additional twists, turns or 
cavities), the positioning of the casing in the centre of the well bore before it is cemented 
in place (this is done with centralisers placed at regular intervals along the casing as it is 
run in the hole, to keep it away from the rock face) and the correct choice of cement. The 
cement design needs to be studied both for its liquid properties during pumping (to ensure 
that it gets to the right place) and then for its mechanical strength and flexibility, so that it 
remains intact. The setting time of the cement is also a critical factor – cement that takes 
too long to set may have reduced strength; equally, cement that sets before it has been 
fully pumped into place requires difficult remedial action.

8.  Pad drilling has long been used in northern areas, such as Alaska and in Russia, but the introduction of this 
practice to places such as Texas is relatively new.
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Figure 1.2 ⊳ � Typical well design and cementing
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Source: Adapted from ConocoPhillips.

Well completion

Once the well has been drilled, the final casing cemented in place across the gas-bearing 
rock has to be perforated in order to establish communication between the rock and the 
well.9 The pressure in the well is then lowered so that hydrocarbons can flow from the 
rock to the well, driven by the pressure differential. With shale and tight gas, the flow 
will be very low, because of the low permeability of the rock. As the rate of hydrocarbon 
flow determines directly the cash flow from the well, low flow rates can mean there is 
insufficient revenue to pay for operating expenses and provide a return on the capital 
invested. Without additional measures to accelerate the flow of hydrocarbons to the well, 
the operation is then not economic. 

Several technologies have been developed over the years to enhance the flow from low 
permeability reservoirs. Acid treatment, involving the injection of small amounts of strong 
acids into the reservoir to dissolve some of the rock minerals and enhance the permeability 

9.  Some wells are completed “open-hole”, in which there is no casing in the final part of the well in the gas-
bearing rock; this is not uncommon in horizontal wells.
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of the rock near the wellbore, is probably the oldest and is still widely practised, particularly 
in carbonate reservoirs. Wells with long horizontal or lateral sections (known as horizontal 
wells) can increase dramatically the contact area between the reservoir rock and the 
wellbore, and are likewise effective in improving project economics. Hydraulic fracturing, 
developed initially in the late 1940s, is another effective and commonly-practised 
technology for low-permeability reservoirs. When rock permeability is extremely low, as in 
the case of shale gas or light tight oil, it often takes the combination of horizontal wells and 
hydraulic fracturing to achieve commercial rates of production (Figure 1.3). Advances in 
the application of these two techniques, in combination, largely explain the surge in shale 
gas production in the United States since 2005. 

Figure 1.3 ⊳ � Shale gas production techniques and possible environmental 
hazards
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Source: Adapted from Aldhous (2012).

Note: The possible environmental hazards discussed in the text are shown with red arrows. Although the 
figure illustrates a shale gas well with multi-stage hydraulic fracturing, some similar hazards are present with 
conventional gas wells, and with tight gas developments.

Hydraulic fracturing involves pumping a fluid – known as fracturing fluid – at high pressure 
into the well and then, far below the surface, into the surrounding target rock. This creates 
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fractures or fissures a few millimetres wide in the rock. These fissures can extend tens 
or, in some cases, even hundreds of metres away from the well bore. Once the pressure 
is released, these fractures would tend to close again and not produce any lasting 
improvement in the flow of hydrocarbons. To keep the fractures open, small particles, such 
as sand or ceramic beads, are added to the pumped fluid to fill the fractures and to act as 
proppants, i.e. they prop open the fractures thus allowing the gas to escape into the well.

Box 1.3 ⊳ � Unconventional gas production and earthquake risks

There have been instances of earthquakes associated with unconventional gas 
production, for example the case of the Cuadrilla shale gas operations near Blackpool 
in the United Kingdom, or a case near Youngstown, Ohio, in the United States, which 
has been provisionally linked to injection of waste water, an operation that is similar 
in some respects to hydraulic fracturing. The registered earthquakes were small, of 
a magnitude of around two on the Richter scale, meaning they were discernible by 
humans but did not create any surface damage.

Because it creates cracks in rocks deep beneath the surface, hydraulic fracturing always 
generates small seismic events; these are actually used by petroleum engineers to 
monitor the process. In general, such events are several orders of magnitude too small 
to be detected at the surface: special observation wells and very sensitive instruments 
need to be used to monitor the process. Larger seismic events can be generated when 
the well or the fractures happen to intersect, and reactivate, an existing fault. This 
appears to be what happened in the Cuadrilla case. 

Hydraulic fracturing is not the only anthropogenic process that can trigger small 
earthquakes. Any activity that creates underground stresses carries such a risk. 
Examples linked to construction of large buildings, or dams, have been reported. 
Geothermal wells in which cold water is circulated underground have been known to 
create enough thermally-induced stresses to generate earthquakes that can be sensed 
by humans (Cuenot, 2011). The same applies to deep mining (Redmayne, 1998). What 
is essential for unconventional gas development is to survey carefully the geology of the 
area to assess whether deep faults or other geological features present an enhanced 
risk and to avoid such areas for fracturing. In any case, monitoring is necessary so that 
operations can be suspended if there are signs of increased seismic activity.10

In many cases, a series of fractures is created at set intervals, one after the other, about 
every 100 metres along the horizontal well bore. This multi-stage fracturing technique has 
played a key role in unlocking production of shale gas and light tight oil in the United States 
and promises to do likewise elsewhere in the world. A standard single-stage hydraulic 
fracturing may pump down several hundred cubic metres of water together with proppant 
and a mixture of various chemical additives. In shale gas wells, a multi-stage fracturing 

10.  Detailed recommendations, following analysis of the Cuadrilla event, are under consideration by the United 
Kingdom Department of Energy and Climate Change (DECC, 2012).
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would commonly involve between ten and twenty stages, multiplying the volumes of 
water and solids by 10 or 20, and hence the total values for water use might reach from 
a few thousand to up to twenty thousand cubic metres of water per well and volumes of 
proppant of the order of 1  000 to 4  000  tonnes per well. The repeated stresses on the 
well from multiple high-pressure procedures increase the premium on good well design 
and construction to ensure that gas bearing formations are completely isolated from other 
strata penetrated by the well.

Once the hydraulic fracturing has been completed, some of the fluid injected during the 
process flows back up the well as part of the produced stream, though typically not all of 
it ‒ some remains trapped in the treated rock. During this flow-back period, typically over 
days (for a single-stage fracturing) to weeks (for a multi-stage fracturing), the amount of 
flow back of fracturing fluid decreases, while the hydrocarbon content of the produced 
stream increases, until the flow from the well is primarily hydrocarbons. 

Best practice during this period is to use a so-called “green completion” or “reduced-
emissions completion”, whereby the hydrocarbons are separated from the fracturing fluid 
(and then sold) and the residual flow-back fluid is collected for processing and recycling or 
disposal. However, while collecting and processing the fluid is standard practice, capturing 
and selling the gas during this initial flow-back phase requires investment in gas separation 
and processing facilities, which does not always take place. In these cases, there can be 
venting of gas to the atmosphere (mostly methane, with a small fraction of VOCs) or 
flaring (burning) of hydrocarbon or hydrocarbon/water mixtures. Venting and/or flaring of 
the gas at this stage are the main reasons why shale and tight gas can give rise to higher 
greenhouse-gas emissions than conventional production (see the later section on methane 
and other airborne emissions).

Production

Once wells are connected to processing facilities, the main production phase can begin. 
During production, wells will produce hydrocarbons and waste streams, which have to be 
managed. But the well site itself is now less visible: a “Christmas tree” of valves, typically 
one metre high, is left on top of the well, with production being piped to processing 
facilities that usually serve several wells; the rest of the well site can be reclaimed. In some 
cases, the operator may decide to repeat the hydraulic fracturing procedure at later times 
in the life of the producing well, a procedure called re-fracturing. This was more frequent 
in vertical wells but is currently relatively rare in horizontal wells, occurring in less than 10% 
of the horizontal shale-gas wells drilled in the United States. 

The production phase is the longest phase of the lifecycle. For a conventional well, 
production might last 30 years or more. For an unconventional development, the productive 
life of a well is expected to be similar, but shale gas wells typically exhibit a burst of initial 
production and then a steep decline, followed by a long period of relatively low production. 
Output typically declines by between 50% and 75% in the first year of production, and most 
recoverable gas is usually extracted after just a few years (IEA, 2009).
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Well abandonment

At the end of their economic life, wells need to be safely abandoned, facilities dismantled 
and land returned to its natural state or put to new appropriate productive use. Long-term 
prevention of leaks to aquifers or to the surface is particularly important. Since much of the 
abandonment will not take place until production has ceased, the regulatory framework 
needs to ensure that the companies concerned make the necessary financial provisions and 
maintain technical capacity beyond the field’s economic life to ensure that abandonment is 
completed satisfactorily, and well integrity maintained over the long term. 

Coalbed methane developments

Coalbed methane refers to methane (natural gas) held within the solid matrix of coal seams. 
Some of the methane is stored within the coal as a result of a process called adsorption, 
whereby a film of methane is created on the surface of the pores inside the coal. Open 
fractures in the coal may also contain free gas or water. In some cases, methane is present 
in large volumes in coalbeds and can constitute a serious safety hazard for coal-mining 
operations. Significant volumes of CO2 may also be present in the coal. 

There are both similarities and differences between coalbed methane and the two other 
main types of unconventional gas discussed, which are linked to the way in which coalbed 
methane is extracted, the associated costs and the impact on the environment. The main 
similarity is the low permeability of the gas-bearing reservoir – a critical factor for the 
technical and economic viability of extraction. Virtually all the permeability of a coalbed is 
due to fractures, in the form of cleats and joints. These fractures tend to occur naturally so 
that, within a small part of the seam, methane is able to flow through the coalbed. As with 
shale and tight gas deposits, there are major variations in the concentration of gas from 
one area to another within the coal seams. This, together with variations in the thickness 
of the seam, has a significant impact on potential production rates. 

Above ground, coalbed methane production involves disruption to the landscape and local 
environment through the construction of drilling pads and access roads, and the installation 
of on-site production equipment, gas processing and transportation facilities. As is often 
the case with shale gas and tight gas, coalbed methane developments require the drilling 
of more wells than conventional oil and gas production; as a result, traffic and vehicle noise 
levels, noise from compressors, air pollution and the potential damage to local ecological 
systems are generally more of an issue than for conventional gas output.

There are some important differences between coalbed methane and shale or tight 
gas resources. Coalbed methane deposits can be located at shallow depths (these are 
predominantly the deposits that have been exploited thus far), whereas shale and tight gas 
are usually found further below the surface. Water is often present in the coalbed, which 
needs to be removed to allow the gas to flow to the well. In addition, coalbed methane 
contains very few heavier liquid hydrocarbons (natural gas liquids or gas condensate), 
which means the commercial viability of production depends heavily on the price at which 
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the gas itself can be sold; in the case of shale gas produced together with large volumes of 
associated natural gas liquids, the price of oil plays a very important role in determining the 
overall profitability of the development project.

Figure 1.4 ⊳ � Coalbed methane production techniques and possible 
environmental hazards
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Source: Adapted from Aldhous (2012).

Note: The possible environmental hazards discussed in the text are shown with red arrows.

Considerable progress has been made over the last 25 years in honing techniques to 
extract coalbed methane on a commercial basis, paving the way to production on a 
significant scale, initially in North America and, since the mid-1990s, in Australia. Coalbed 
methane can be produced from vertical or horizontal wells. The latter are becoming 
increasingly common, though less so than for shale gas. Generally, the thinner the coal 
seam and the greater the depth of the deposit, the more likely it is that a horizontal well 
will be drilled. Although a depth of 800 to 1 200 metres is typical, in some cases coalbed 
methane is located in shallow formations as little as 100 metres below the surface, making 
it more economical to drill a series of vertical wells, rather than a horizontal well with 
extended reach along the coal seam. For shallow deposits, wells can often be drilled using 
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water-well drilling equipment, rather than rigs designed for conventional hydrocarbon 
extraction, with commensurately cheaper costs (US EPA, 2010). For deeper formations 
(400 to 1 200 metres), both vertical and horizontal wells are used and custom-built small 
drilling rigs, capable of handling blow-out risks, have been developed.

Once a well is drilled, the water in the coalbed is extracted, either under natural pressure 
or by using mechanical pumping equipment – a process known as dewatering (water use 
and contamination risks are discussed in more detail in the next section). As subsurface 
pressure drops with dewatering, the flow of natural gas previously held in place by water 
pressure increases initially as it is released from the natural fractures or cleats within the 
coalbed. The gas is separated from the water at the surface and is then compressed and 
injected into a gas-gathering pipeline for onward transportation. 

As in the case of shale gas, the rate of production of coalbed methane is often significantly 
lower than that achieved in conventional gas reservoirs; it also tends to reach a peak quickly 
as water is extracted, before entering a period of decline as the well pressure drops further. 
A well’s typical lifespan is between five and fifteen years, with maximum gas production 
often achieved after one to six months of water removal (Horsley & Witten, 2001). In most 
cases, the low natural permeability of the coal seam means that gas can flow into the well 
from only a small segment of the coal seam – a characteristic shared with shale and tight 
gas. As a result, a relatively large number of wells is required over the area of the coalbed, 
especially if they are drilled vertically.

In some cases, it may also be necessary to use hydraulic fracturing to increase the 
permeability of the coal seam in order to stimulate the release of water and gas. This is 
normally practised only in deeper wells, typically at several hundred  metres below the 
ground. The decision to proceed with hydraulic fracturing needs to be made before drilling 
begins, as the well and surface facilities need to be designed accordingly. The approach is 
similar to that described above, but in contrast to current practice with shale gas and tight 
gas wells, fracturing for coalbed methane production is frequently a single-stage process, 
i.e. one fracturing job per well, rather than multi-stage. Since wells are often drilled in 
batches, the water required for hydraulic fracturing can be sourced from neighbouring 
wells that are being de-watered. The flow-back fluids recovered from the well are pumped 
to lined containment pits or tanks for treatment or offsite disposal.

Water use 

The extent of water use and the risk of water contamination are key issues for any 
unconventional gas development and have generated considerable public concern. In 
the case of a shale gas or tight gas development, though some water is required during 
the drilling phase, the largest volumes of water are used during the hydraulic fracturing 
process: each well might need anything between a few thousand and 20 000 cubic metres 
(between 1  million and 5  million gallons). Efficient use of water during fracturing is 
essential. Average water use per well completion in the Eagle Ford play in west Texas has 
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been reduced from 18.5 to 13.6 thousand cubic metres since mid-2010, primarily through 
increased recycling of waste water from flow-back of fracturing fluid, an important 
step forward, given that more than 2  800 drilling permits were issued by the Railroad 
Commission of Texas for Eagle Ford wells in 2011 (RCT, 2012).11 The amount of water 
required for shale gas or tight gas developments, calculated per unit of energy produced, 
is higher than for conventional gas but comparable to the amount used for the production 
of conventional oil (Table 1.1). 

Table 1.1 ⊳ � Ranges of water use per unit of natural gas and oil produced 
(cubic metres per terajoule)

Water consumption 

Production Refining

Natural gas

Conventional gas 0.001 - 0.01

Conventional gas with fracture stimulation 0.005 - 0.05

Tight gas 0.1 - 1

Shale gas 2 - 100

Oil
Conventional oil* 0.01 - 50 5 - 15
Conventional oil with fracture stimulation* 0.05 - 50 5 - 15
Light tight oil 5 - 100 5 - 15

Source: IEA analysis.

* The high end of this range is for secondary recovery with water flood; the low end is primary recovery.

Note: Coalbed methane is not included in this table as it tends to produce water, rather than require it for 
production (but see below for the discussion of waste water disposal). 

Water for fracturing can come from surface water sources (such as rivers, lakes or the 
sea), or from local boreholes (which may draw from shallow or deep aquifers and which 
may already have been drilled to support production operations), or from further afield 
(which generally requires trucking). Transportation of water from its source and to 
disposal locations can be a large-scale activity. If the hydraulic fracturing of a well requires 
15 000 cubic metres, this amounts to 500 truck-loads of water, on the basis that a typical 
truck can hold around 30 cubic metres of water. Such transportation congests local roads, 
increases wear and tear to roads and bridges and, if not managed safely, can increase road 
accidents. 

In areas of water-scarcity, the extraction of water for drilling and hydraulic fracturing (or 
even the production of water, in the case of coalbed methane) can have broad and serious 
environmental effects. It can lower the water table, affect biodiversity and harm the local 

11.  If these 2 800 wells each require 13.6 thousand cubic metres for well completion, the water requirement of 
38 million cubic metres represents 0.2% of annual water consumption of the state of Texas, or 12% of the annual 
water consumption of the city of Dallas, Texas.
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ecosystem. It can also reduce the availability of water for use by local communities and in 
other productive activities, such as agriculture. 

Limited availability of water for hydraulic fracturing could become a significant constraint 
on the development of tight gas and shale gas in some water-stressed areas. In China, for 
example, the Tarim Basin in the Xinjiang Uyghur Autonomous Region holds some of the 
country’s largest shale gas deposits, but also suffers from severe water scarcity. Although 
not on the same scale, in terms of either resource endowment or water stress, a number 
of other prospective deposits occur in regions that are already experiencing intense 
competition for water resources. The development of China’s shale gas industry has to date 
focused on the Sichuan basin, in part because water is much more abundant in this region. 

Hydraulic fracturing dominates the freshwater requirements for unconventional gas 
wells and the dominant choice of fracturing fluid for shale gas, “slick-water”, which 
is often available at the lowest cost and in some shale reservoirs may also bring some 
gas-production benefits, is actually the most demanding in terms of water needs. Much 
attention has accordingly been given to approaches which might reduce the amount of 
water used in fracturing. Total pumped volumes (and therefore water volumes required) 
can be decreased through the use of more traditional, high viscosity, fracturing fluids (using 
polymers or surfactants), but these require a complex cocktail of chemicals to be added. 
Foamed fluids, in which water is foamed with nitrogen or CO2, with the help of surfactants 
(as used in dish washing liquids), can be attractive, as 90% of the fluid can be gas and 
this fluid has very good proppant-carrying properties. Water can, indeed, be eliminated 
altogether by using hydrocarbon-based fracturing fluids, such as propane or gelled 
hydrocarbons, but their flammability makes them more difficult to handle safely at the well 
site. The percentage of fracturing fluid that gets back-produced during the flow-back phase 
varies with the type of fluid used (and the shale characteristics), so the optimum choice 
of fluid will depend on many factors: the availability of water, whether water recycling is 
included in the project, the properties of the shale reservoir being tapped, the desire to 
reduce the usage of chemicals and the economics.

Treatment and disposal of waste water

Waste water from hydraulic fracturing

The treatment and disposal of waste water are critical issues for unconventional gas 
production – especially in the case of the large amounts of water customarily used for 
hydraulic fracturing. After being injected into the well, part of the fracturing fluid (which is 
often almost entirely water) is returned as flow-back in the days and weeks that follow. The 
total amount of fluid returned depends on the geology; for shale it can run from 20% to 
50% of the input, the rest remaining bound to the clays in the shale rock. Flow-back water 
contains some of the chemicals used in the hydraulic fracturing process, together with 
metals, minerals and hydrocarbons leached from the reservoir rock. High levels of salinity 
are quite common and, in some reservoirs, the leached minerals can be weakly radioactive, 
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requiring specific precautions at the surface.12 Flow-back returns (like waste water from 
drilling) requires secure storage on site, preferably fully contained in stable, weather-proof 
storage facilities as they do pose a potential threat to the local environment unless handled 
properly (see next section). 

Once separated out, there are different options available for dealing with waste water from 
hydraulic fracturing. The optimal solution is to recycle it for future use and technologies 
are available to do this, although they do not always provide water ready for re-use for 
hydraulic fracturing on a cost-effective basis. A second option is to treat waste water at 
local industrial waste facilities capable of extracting the water and bringing it to a sufficient 
standard to enable it to be either discharged into local rivers or used in agriculture. 
Alternatively, where suitable geology exists, waste water can be injected into deep rock 
layers.

Box 1.4 ⊳  �What is in a fracturing fluid?

Environmental concerns have focused on the fluid used for hydraulic fracturing and the 
risk of water contamination through leaks of this fluid into groundwater. Water itself, 
together with sand or ceramic beads (the “proppant”), makes up over 99% of a typical 
fracturing fluid, but a mixture of chemical additives is also used to give the fluid the 
properties that are needed for fracturing. These properties vary according to the type 
of formation. Additives (not all of which would be used in all fracturing fluids) typically 
help to accomplish four tasks:

•	 To keep the proppant suspended in the fluid by gelifying the fluid while it is being 
pumped into the well and to ensure that the proppant ends up in the fractures 
being created. Without this effect, the heavier proppant particles would tend to be 
distributed unevenly in the fluid under the influence of gravity and would, therefore, 
be less effective. Gelling polymers, such as guar or cellulose (similar to those used in 
food and cosmetics) are used at a concentration of about 1%. Cross-linking agents, 
such as borates or metallic salts, are also commonly used at very low concentration to 
form a stronger gel. They can be toxic at high concentrations, though they are often 
found at low natural concentrations in mineral water.

•	 To change the properties of the fluid over time. Characteristics that are needed to 
deliver the proppant deep into subsurface cracks are not desirable at other stages in 
the process, so there are additives that give time-dependent properties to the fluid, 
for example, to make the fluid less viscous after fracturing, so that the hydrocarbons 
flow more easily along the fractures to the well. Typically, small concentrations of 
chelants (such as those used to de-scale kettles) are used, as are small concentrations 
of oxidants or enzymes (used in a range of industrial processes) to break down the 
gelling polymer at the end of the process.

12.  These naturally occurring radioactive materials, or NORMs, are not specific to unconventional resources; 
some conventional reservoirs are also known to produce them.
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•	 To reduce friction and therefore reduce the power required to inject the fluid into the 
well. A typical drag-reducing polymer is polyacrylamide (widely used, for example, as 
an absorbent in baby diapers).

•	 To reduce the risk that naturally occurring bacteria in the water affect the performance 
of the fracturing fluid or proliferate in the reservoir, producing hydrogen sulphide; this 
is often achieved by using a disinfectant (biocide), similar to those commonly used in 
hospitals or cleaning supplies.

Until recently, the chemical composition of fracturing fluids was considered a trade 
secret and was not made public. This position has fallen increasingly out of step with 
public insistence that the community has the right to know what is being injected into 
the ground. Since 2010, voluntary disclosure has become the norm in most of the United 
States.13 The industry is also looking at ways to achieve the desired results without using 
potentially harmful chemicals. “Slick-water”, made up of water, proppant, simple drag-
reducing polymers and biocide, has become increasingly popular as a fracturing fluid 
in the United States, though it needs to be pumped at high rates and can carry only 
very fine proppant. Attention is also being focused on reducing accidental surface spills, 
which most experts regard as a more significant risk of contamination to groundwater.

Produced water from coalbed methane production14

In the case of coalbed methane, additional water supplies are rarely required for the 
production process, but the satisfactory disposal of water that has been extracted from 
the well during the dewatering process is of critical importance. The produced water is 
usually either re-injected into isolated underground formations, discharged into existing 
drainage systems, sent to shallow ponds for evaporation or, once properly treated, used 
for irrigation or other productive uses. The appropriate disposal option depends on several 
factors, notably the quality of the water. Depending on the geology of the coal deposit 
and hydrological conditions, produced water can be very salty and sodic (containing 
high concentrations of sodium, calcium and magnesium) and can contain trace amounts 
of organic compounds, so it often requires treatment before it can be used for irrigation 
or other uses. Using saline water for irrigation can inhibit germination and plant growth, 
while excessively sodic water can change the physical properties of the soil, leading to poor 
drainage and crusting and adversely affecting crop yields. 

The potential cost of water disposal depends on both the extent to which treatment is 
required and the volume of water produced. In practice, the total amount of water that 
must be removed from each well to allow gas to be produced varies considerably. It can 
be very large; for example, an estimated 65  cubic metres of water (17  000  gallons) are 

13.  See the voluntary disclosure web site FracFocus (www.fracfocus.org).
14.  Both conventional gas and other types of unconventional gas production can also be accompanied by 
produced water, but the flow rates involved are normally much smaller than for coalbed methane.
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pumped from each coalbed methane well every day on average in the Powder River Basin 
in Montana and Wyoming. For the United States as a whole, it is estimated that, in 2008, 
more than 180 million cubic metres (47 billion gallons) of produced water were pumped 
out of coal seams (US EPA, 2010), equivalent to the annual direct water consumption of 
the city of San Francisco. In principle, produced water can be treated to any desired quality. 
This may be costly, but the treated water may have economic value for productive uses – as 
long as the cost of transporting the water is not excessive. 

The options for treatment and disposal of produced water and the market value of water in 
the near vicinity are often key factors in the economics of coalbed methane developments. 
Many of the areas where coalbed methane is produced today, or where prospects for 
production are good, are arid or semi-arid and could benefit from additional freshwater 
supplies. For now, evaporation or discharge into drainage systems (in some cases, after 
treatment) are still the most common methods in North America (reuse of treated water 
is growing in Australia) because of the high cost of purifying the water for irrigation or 
reinjection into a deeper layer. In the United States, approximately 85 million cubic metres 
(22 billion gallons) of produced water, or about 45% of the total, were discharged to surface 
waters in 2008 with little or no treatment (US EPA, 2010).

There is limited experience of assessing the actual environmental impacts of produced 
water from coalbed methane production. A recent study by the US National Research 
Council found that the eventual disposal or use of produced water can have both positive 
and negative impacts on soil, ecosystems, and the quality and quantity of surface water and 
groundwater (NRC, 2010). Although the study found no evidence of widespread negative 
effects, allowance must be made for the fact that the industry is relatively young and that 
few detailed investigations into local impacts have been carried out yet.

The risk of water contamination

Significant concern has been expressed about the potential for contamination of water 
supplies, whether surface supplies, such as rivers or shallow freshwater aquifers, or deeper 
waters, as a result of all types of unconventional gas production. Water supplies can be 
contaminated from four main sources:

	 Accidental spills of fluids or solids (drilling fluids, fracturing fluids, water and produced 
water, hydrocarbons and solid waste) at the surface.

	 Leakage of fracturing fluids, saline water from deeper zones or hydrocarbons into a 
shallow aquifer through imperfect sealing of the cement column around the casing.

	 Leakage of hydrocarbons or chemicals from the producing zone to shallow aquifers 
through the rock between the two.

	 Discharge of insufficiently treated waste water into groundwater or, even, deep 
underground.

None of these hazards is specific to unconventional resources; they also exist in conventional 
developments, with or without hydraulic fracturing. However, as noted, unconventional 
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developments occur at a scale that inevitably increases the risk of incidents occurring. 
Public concern has focused on the third source of potential contamination, i.e.  the 
possibility that hydrocarbons or chemicals might migrate from the produced zone into 
aquifers through the intervening rock. However, this may actually be the least significant 
of the hazards, at least in the case of shale gas and tight gas production; in some cases a 
focus on this risk may have diverted attention, including the time of regulators, away from 
other more pressing issues.

Box 1.5 ⊳ � Coalbed methane production and effects on groundwater

There are concerns about the impact of coalbed methane production on groundwater 
flows and the supply and purity of water in aquifers adjacent to the coal seams being 
exploited. The extent to which this can occur is very location specific and depends on 
several factors, the most important of which are the overall volume of water initially 
in the coalbed and the hydrogeology of the basin; the density of the coalbed methane 
wells; the rate of water pumping by the operator; the connectivity of the coalbed 
and aquifer to surrounding water sources and, therefore, the rate of recharge of the 
aquifer; and the length of time over which pumping takes place. 

In the United States, various agencies now monitor water in producing areas in order 
to learn more about this process. Depletion of aquifers because of coalbed methane 
production has been well-documented in the Powder River Basin: in the Montana 
portion of the basin, 65% to 87% recovery of coalbed groundwater levels has occurred 
after production ceased (NRC, 2010). However, the extent to which water levels in 
shallow alluvial and water table aquifers have dropped has not been measured 
(recent legislation in Queensland in Australia now requires such measurements to be 
performed). There is evidence that groundwater movement provoked by dewatering 
during coalbed methane production has increased the amount of dissolved salt and 
other minerals in some areas.

Because productive coal seams are often at shallower depths than tight or shale gas 
deposits, there is also a greater risk that fracturing fluids might find their way into an 
aquifer directly or via a fracture system (either a natural system or one that is created 
through fracturing). This risk is mitigated in part by the fact that, in contrast to shale or 
tight gas, the dewatering required for production of coalbed methane means that less 
water may be left in the ground in aquifers near the vicinity of the well, limiting the 
potential for contamination. As with shale or tight gas production, the flow-back fluids 
removed from the well after fracturing need to be treated before disposal. 
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The first hazard – the risk of spills at the surface – can be mitigated through rigorous 
containment of all fluid and solid streams. Accidents can always happen but good 
procedures, training of personnel and availability of spill control equipment can ensure 
they have a limited impact. As discussed below, greater use of pipelines to move liquids can 
reduce the risks associated with trucking movements.

Controlling the second hazard – leakage into a shallow aquifer behind the well casing – 
requires use of best practice in well design and well construction, particularly during the 
cementing process, to ensure a proper seal is in place, systematic verification of the quality 
of the seal and ensuring the seal does not deteriorate through the life of a well. This is 
a particular issue for wells in which multi-stage hydraulic fracturing is performed: the 
repeated cycles of high pressure pumping can apply repeated stress to the casing and to 
the cement column, potentially weakening them; selection of an appropriate strength of 
casing is therefore important. 

The third hazard – leakage through the rock from the producing zone – is unlikely in the 
case of shale gas or tight gas because the producing zone is one to several thousand metres 
below any relevant aquifers and this thickness of rock usually includes one or several very 
impermeable layers. For example, the deepest potential underground sources of drinking 
water in the Barnett shale are at a depth of 350  metres, whereas the shale layer is at 
2 000 to 2 300 metres. However, the hazard may be encountered if the producing zone is 
shallower or if there are shallow pockets of naturally occurring methane above the target 
reservoir. It is also theoretically possible if there are no identified impermeable layers in 
between or if deep faults are present that can act as a conduit for fluids to move from the 
deep producing zone towards the surface (such fluid movements are generally slow, but can 
occur on time scales of tens of years). One particular possibility is that hydraulic fractures 
may not be contained in the targeted rock layer and may break through important rock 
barriers or connect to deep faults. This is a rare occurrence because hydraulic fracturing is 
designed to avoid this (potentially costly) situation15, but it cannot be completely excluded 
when the local geology is insufficiently understood.

Appropriate prior studies of the local geology to identify such situations are therefore a 
must before undertaking significant developments. Indeed, methane seeps to the surface 
have long been known (for example, the flame that has been burning for centuries in the 
village of Mrapen in Central Java, Indonesia, or the gas that fuels the “Eternal Flame Falls” 
in New York State, United States) and they have been used as a way to identify the presence 
of hydrocarbon deposits underground, showing that perfect rock seals do not always exist. 
On the other hand, the existence of seeps, and for that matter the presence of methane 
in many aquifers (Molofsky, 2011), shows that not all contamination is linked to industrial 
activity; it can also occur as a result of natural geological or biological processes.

15.  This would increase losses of fracturing fluid and could mean in turn that the fracturing does not translate 
into the desired increase in gas production.
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Addressing the fourth hazard – discharge of insufficiently treated waste water into 
groundwater or, even, deep underground – requires a regulatory response including 
appropriate tracking and documentation of waste water volumes and composition, how 
they are transported and disposed. 

Methane and other air emissions

Shale gas and tight gas have higher production-related greenhouse-gas emissions than 
conventional gas. This stems from two effects:

	 More wells and more hydraulic fracturing are needed per cubic metre of gas produced. 
These operations use energy, typically coming from diesel motors, leading to higher 
CO2 emissions per unit of useful energy produced.

	 More venting or flaring during well completion. The flow-back phase after hydraulic 
fracturing represents a larger percentage of the total recovery per well (because of 
more hydraulic fracturing, the flow-back takes longer and the total recovery per well is 
typically smaller due to the low permeability of the rock).

We have previously released estimates of these effects both in the case of flaring and 
for venting during flow-back, based on EPA data, in order to see what difference these 
practices make (IEA, 2011b). In the case of flaring, total well-to-burner emissions are 
estimated to be 3.5% higher than for conventional gas, but this figure rises to 12% if the 
gas is vented. Eliminating venting, minimising flaring and recovering and selling the gas 
produced during flow-back, in line with the Golden Rules, would reduce emissions below 
the lower figure given here. 

Similar concerns about emissions attach to coalbed methane production, where significant 
volumes of methane can be vented into the atmosphere during the transition phase from 
dewatering to gas production and, where hydraulic fracturing is applied, during the well 
completion phase. Careful management of drilling, fracturing and production operations 
is essential to keep such emissions to a minimum.16 This requires specialised equipment to 
separate gas from the produced water (and fracturing fluids) before injecting it into a gas-
gathering system (or into temporary storage). If this is not possible for technical, logistical 
or economic reasons, it is preferable that the gas should be flared rather than vented for 
safety reasons and because the global-warming effect is considerably less. 

The general issue of greenhouse-gas emissions from the production, transportation and 
use of natural gas, as well as the additional emissions from unconventional gas compared 
with conventional gas, has been the subject of some controversy. Some authors (Howarth, 
2011) have argued that emissions from using natural gas as a source of primary energy 
have been significantly underestimated, particularly for unconventional gas. It has even 
been argued that full life-cycle emissions from unconventional gas can be higher than from 

16.  Coalbed methane production can reduce methane emissions if the gas would in any case have been released 
by subsequent coal-mining activities.
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coal. The main issue revolves around methane emissions not only during production, but 
also during transportation and use of natural gas. 

Methane is a more potent greenhouse gas than CO2 but has a shorter lifetime in the 
atmosphere – a half-life of about fifteen  years, versus more than 150  years for CO2. As 
a result, there are different possible ways to compare the effect of methane and CO2 on 
global warming. One way is to evaluate the Global Warming Potential (GWP) of methane, 
compared to CO2, averaged over 100 years. The 4th Assessment report of the IPCC (IPCC, 
2007) gives a value of 25 (on a mass basis) for this 100-years GWP, revised up from their 
previous estimate of 21. This value is relevant when looking at the long-term relative 
benefits of eliminating a temporary source of methane emissions versus a CO2 source. 

Averaged over 20 years, the GWP, estimated by the IPCC, is 72. This figure can be argued to 
be more relevant to the evaluation of the significance of methane emissions in the next two 
or three decades, which will be the most critical to determine whether the world can still 
reach the objective of limiting the long-term increase in average surface temperatures to 
2 degrees Celsius (°C). Moreover, some scientists have argued that interactions of methane 
with aerosols reinforce the GWP of methane, possibly bringing it to 33 over 100 years and 
105 over 20 years (Shindell, 2009): these recent analyses are under review by the IPCC. 
Such higher values would, of course, have implications not only for methane emissions 
from the gas chain but also for all other methane emissions, from livestock, landfills, rice 
paddies and other agricultural sources, as well as from natural sources (Spotlight).

Methane emissions along the gas value chain (whether conventional or unconventional) 
come from four main sources:

	 Intentional venting of gas for safety or economic reasons. Venting during well 
completions falls into this category, but venting can also take place as part of equipment 
maintenance operations.

	 Fugitive emissions. These might be leaks in pipelines, valves or seals, whether 
accidental (e.g. corrosion in pipelines) or built into the equipment design (e.g. rotating 
seals, open tanks).

	 Incidents involving rupture of confining equipment (pipelines, pressurised tanks, well 
isolation).

	 Incomplete burning. The effectiveness of gas burning in gas flares varies according to 
wind and other conditions and is typically no better than 98%. (A similar effect can 
be seen when starting a gas stove: it can take a few seconds before a steady flame is 
established).

By their very nature, these emissions are difficult to quantify. Most estimates are based on 
emission factors for various parts of the chain (wells, various equipment, pipelines and so 
on), derived from studies conducted in the United States by the EPA and the Gas Research 
Institute in the 1990s (US EPA and GRI, 1996). It is by no means clear that these studies give 

017-61_Chapter_1.indd   39 23/05/2012   16:09:03

©
 O

E
C

D
/IE

A
, 2

01
2



40 World Energy Outlook | Special Report

a good indication for emissions in other parts of the world, or for the possible evolution of 
methane emissions in the future. Estimates of methane emissions from the gas chain at the 
global level vary between 1% and 8% of produced natural gas volumes (Howarth, 2011 and 
references therein; Petron, 2012; Cathles, 2012; Jiang 2011; and Skone 2011). The most 
comprehensive projections of future emissions, from the EPA (US EPA, 2011), assume no 
change in emission factors, for want of a better approach, and project a 26% increase in 
methane emissions from the oil and gas industry between 2010 and 2030.

Different assumptions about the level and impact of methane emissions can have 
a profound effect on the perception of gas as a “cleaner” fossil fuel. Figure  1.5 shows 
the well-to-burner emissions of natural gas compared to coal, as a function of various 
assumptions on GWP and average methane emissions. As seen from this figure, standard 
values (25 GWP, 2% to 3% methane emissions as a share of total production) substantiate 
the widely accepted advantage of gas, thanks to its lower combustion CO2 emissions per 
unit of energy; but it is clear that more pessimistic assumptions can make gas a worse 
greenhouse-gas emitter than coal. It is very important that additional scientific work 
should pinpoint the most relevant GWP value and that efforts are redoubled to measure 
methane emissions more systematically.17

Figure 1.5 ⊳ � The impact of changing assumptions about methane on 
comparative well-to-burner greenhouse-gas emissions of 
natural gas versus coal 
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Note: Values below 1.0 on the vertical axis show points at which gas has lower well-to-burner emissions 
than coal. The comparison is for equivalent volumes of primary energy; however, gas also tends to be 
transformed, into other energy carriers (such as electricity) with higher efficiency than coal, so the ratio can 
be lower when calculated for the same end-use energy.

17.  See, for example, a recent paper included in the Proceedings of the US National Academy of Sciences on 
methane leakage from natural gas infrastructure (Alvarez et al., 2012)
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1
One advantage attributable to expanded unconventional gas production and use over 
production and use of conventional gas is the distance to market; in general, unconventional 
resources are developed closer to the point of consumption, thereby reducing the distance 
required for transportation. All else being equal, this tends to reduce the level of fugitive 
emissions, as well as CO2 emissions from the energy used for transportation.

How large are global methane emissions?

It is estimated that about 550 million tonnes (Mt) of methane (IPPC, 2007) are released 
into the atmosphere every year, but data on global methane emissions are poor. 
Converted into CO2 equivalent (using the standard IPCC 100-years Global Warming 
Potential of 25), this amounts to about 14  gigatonnes CO2-eq, roughly one-fourth of 
global greenhouse-gas emissions. Natural emissions (not related to man’s activities) 
represent about 40% of total methane emissions. They come from natural seeps, 
wetlands, animals, such as termites, and vegetation decay. In addition, massive amounts 
of methane are stored in permafrost in Arctic regions and in underwater methane 
hydrates deposits. Some of this stored methane is released by natural processes, 
which are considered likely to accelerate with global warming: there is a risk of natural 
emissions increasing dramatically over the coming decades.

Non-energy related anthropogenic emissions come mostly from livestock, agriculture, 
landfills and wastewater. These represent about 38% of total methane emissions (64% of 
anthropogenic methane emissions). Energy-related methane emissions come from oil, 
gas and coal production, transportation, distribution and use as well as some biomass 
combustion: together they are estimated to be 125 Mt per year, about 20% of global 
methane emissions (36% of anthropogenic methane emissions). The gas and oil industry 
account for the lion’s share of this: 70%, or 90 Mt per year, representing about 15% of 
total methane emissions (26% of anthropogenic emissions).

If current emissions are poorly known and the numbers above mere estimates, 
projecting future methane emissions is fraught with even more uncertainties. 
Natural emissions could be dramatically altered by the evolution of the climate. For 
anthropogenic emissions, activity levels in the energy and other industries as well 
as in livestock and agriculture can be projected, based on econometric analysis and 
assumptions on GDP and population growth, but the evolution of emission factors 
(volume of methane emitted per unit of activity) is very uncertain.18 Many mitigation 
measures are considered to have low or even negative costs: reducing leaks in a gas

18.  The IEA model (developed in collaboration with the OECD, using the ENV-linkages OECD model) uses the 
costs of mitigation measures (as derived from EPA studies; EPA, 2006) and a pseudo-price of carbon (whether 
coming from taxes, a carbon market or from regulations) to determine the likely evolution of emissions from an 
economic point of view. EPA has recently released draft updated costs of mitigation (EPA, 2012).

S P O T L I G H T
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distribution system, for example, can allow more gas to be sold; the gas collected from 
a landfill can be marketed; changing the feed given to livestock to reduce methane 
production can allow more of the energy content of the feed to be transformed 
into marketable meat or milk. On the other hand, because of the very (spatially) 
distributed nature of most methane emission sources, it is not obvious that economic 
considerations alone will be sufficient to induce change. To achieve the trajectories of 
methane emissions consistent with the internationally agreed goal to limit the rise in 
global mean temperature to 2°C above pre-industrial levels, additional policy measures 
will be needed.

Golden Rules to address the environmental impacts
The outlook for unconventional gas production around the world depends critically on how 
the environmental issues described earlier are addressed. Society needs to be adequately 
convinced that the environmental and social risks will be well enough managed to warrant 
consent to unconventional gas production, in the interests of the broader economic, social 
and environmental benefits that the development of unconventional resources can bring. 
The Golden Rules, which are set out below with some explanatory background, suggest 
principles that can allow policy-makers, regulators, operators and others to address these 
environmental and social impacts in order to earn or retain that consent. We have called 
them Golden Rules because they can pave the way for the widespread and large-scale 
development of unconventional gas resources, boosting overall natural gas supply so as to 
realise a Golden Age of Gas (IEA, 2011b). 

Abiding by these Golden Rules – or any rules – cannot reduce to zero the impacts on the 
environment associated with unconventional gas production. In any such undertaking, 
there are inevitable trade-offs between reducing the risks of environmental damage, on 
the one hand, and achieving the benefits that can accrue to society from the development 
of economic resources. In designing an appropriate regulatory framework, policy-makers 
need to set the highest reasonable social and environmental standards, assessing the 
cost of any residual risk against the cost of still higher standards (which could include 
the abandonment of resource exploitation). What is reasonable will evolve over time, 
as technology and industrial best practice evolve: in this spirit, these are not rigid rules, 
set in stone, but principles intended to guide regulators and operators. The format of 
regulation is also critical to achieving the intended result: it may include some specific 
and inflexible requirements but it should also encourage and reward performance to the 
highest standards, not supporting the notion that enough has been done if the instructions 
of others are mechanically observed, however meticulously. Ultimately, operators are 
responsible for the results of their operations. In framing these Golden Rules, we find that 
both governments and industry need to intensify their associated work if public confidence 
in this new industry is to be gained and retained.

017-61_Chapter_1.indd   42 23/05/2012   16:09:03

©
 O

E
C

D
/IE

A
, 2

01
2



Chapter 1 | Addressing environmental risks 43

1
Measure, disclose and engage

	 Integrate engagement with local communities, residents and other stakeholders 
into each phase of a development, starting prior to exploration; provide sufficient 
opportunity for comment on plans, operations and performance, listen to concerns 
and respond appropriately and promptly. Simply providing information to the public 
is not enough; both the industry and the public authorities need to engage with local 
communities and other stakeholders and seek the informed consent that is often 
critical for companies to proceed with a development. Operators need to explain 
openly and honestly their production practices, the environmental, safety, and health 
risks and how they are addressed. The public needs to gain a clear understanding of the 
challenges, risks and benefits associated with the development. The primary role of 
the public authorities in this context is to provide credible, science-based background 
information that can underpin an informed debate and provide the necessary stimulus 
for joint endeavour between the stakeholders. 

	 Establish baselines for key environmental indicators, such as groundwater quality, 
prior to commencing activity, and continue monitoring during operations. This 
is a shared responsibility between the regulatory authorities, industry and other 
stakeholders. The data gathered needs to be made public and opportunities provided 
for all stakeholders to address any concerns raised, as an essential part of earning 
public trust. At a minimum, resource management or regulatory agencies must have 
groundwater quality information (and, for coalbed methane production, information 
on groundwater levels) in advance of new drilling activities, so as to provide a baseline 
against which changes in water level and quality can be compared.

	 Measure and disclose operational data on water use, on the volumes and 
characteristics of waste water and on methane and other air emissions, alongside 
full, mandatory disclosure of fracturing fluid additives and volumes. Good data, 
measurement and transparency are vital to public confidence. For example, effective 
tracking and documentation of waste water is necessary to incentivise and ensure 
its proper treatment and disposal. Reluctance to disclose the chemicals used in the 
hydraulic fracturing process and the volumes involved, though understandable in 
terms of commercial competition, can quickly breed mistrust among local citizens and 
environmental groups. 

	 Minimise disruption during operations, taking a broad view of social and 
environmental responsibilities, and ensure that economic benefits are also felt by 
local communities. Existing legislation and regulations usually require operators to 
act in an environmentally and socially responsible manner, but operators need to go 
beyond minimally satisfying legal requirements in demonstrating their commitment 
to local development and environmental protection, for example through attention to 
local concerns about the volume and timing of truck traffic. Particularly in jurisdictions 
where mineral rights are owned by the state (rather than as in parts of the United 
States, where surface landowners might also be subsurface mineral rights holders, 
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entitled to royalty payments), it is essential that tangible benefits are evident at 
the local level, where production occurs. This can be difficult to achieve in a timely 
manner, given the delay between the start of a development project and the moment 
at which revenues start to flow, whether to government, the mineral rights’ owner or 
the operator. Early public commitment by authorities and developers to expand local 
infrastructure and services in step with exploration and production activities can help. 
Governments need to be willing to consider using part of the revenues (from taxes, 
royalties, etc.) to invest in the development of the areas in question.

Watch where you drill

	 Choose well sites so as to minimise impacts on the local community, heritage, existing 
land use, individual livelihoods and ecology. The choice of well site is a moment 
when engagement with local stakeholders and regulators needs to be handled with 
the utmost care. Each well site needs to be chosen based on the subsurface geology, 
but also taking into consideration populated areas, the natural environment and 
local ecology, existing infrastructure and access roads, water availability and disposal 
options and seasonal restrictions caused by climate or wildlife concerns. Sensitivity 
at this stage to a range of above-ground concerns can do much to mitigate or avoid 
problems later in a development. 

	 Properly survey the geology of the area to make smart decisions about where to 
drill and where to hydraulically fracture: assess the risk that deep faults or other 
geological features could generate earthquakes or permit fluids to pass between 
geological strata. Careful planning can greatly improve the productivity and recovery 
rates of wells, reducing the number of wells that need to be drilled and minimising the 
intensity of hydraulic fracturing and the associated environmental impact. Although 
the risk of triggering an earthquake is small, even minor earth tremors can easily 
undermine public confidence in the safety of drilling operations. A careful study of 
the geology of the area targeted for drilling is necessary to allow operators to avoid 
operations in areas where deep faults or other characteristics create higher risks. 
Producers also need to survey for the presence of old boreholes or naturally occurring 
methane in shallow pockets above the source rock and adjust drilling sites (or the 
pathway of the wellbore) to avoid these areas.

	 Monitor to ensure that hydraulic fractures do not extend beyond the gas-producing 
formations. The risk of leakage of the fracturing fluid used for shale and tight gas 
production through the rock from the producing zone into aquifers is minimal because 
the aquifers are located at much shallower depths; but such migration is theoretically 
possible in certain exceptional circumstances (described in the preceding section). 
A good understanding of the local geology and the use of micro-seismic (or other) 
measuring techniques for monitoring fractures is necessary to minimise the residual 
risk.
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1
Isolate wells and prevent leaks

	 Put in place robust rules on well design, construction, cementing and integrity 
testing as part of a general performance standard that gas bearing formations 
must be completely isolated from other strata penetrated by the well, in particular 
freshwater aquifers. Regulations need to ensure wells are designed, constructed and 
operated so as to ensure complete isolation. Multiple measures need to be in place 
to prevent leaks, with an overarching performance standard requiring operators to 
follow systematically all recommended industry best practices. This applies up to and 
including the abandonment of the well, i.e. through and beyond the lifetime of the 
development.

	 Consider appropriate minimum-depth limitations on hydraulic fracturing to underpin 
public confidence that this operation takes place only well away from the water 
table. Alongside measures to ensure that wells are designed, built and cemented to a 
high standard, the regulator may choose to define an appropriate depth limitation for 
shale and tight gas wells, based on local geology and any risk of communication with 
freshwater aquifers, above which hydraulic fracturing is prohibited. 

	 Take action to prevent and contain surface spills and leaks from wells, and to ensure 
that any waste fluids and solids are disposed of properly. This requires both stringent 
regulations and a strong performance commitment by all companies involved in 
drilling and production-related activities to carry out operations to the highest possible 
standard. Good procedures, training of personnel and ready availability of spill-control 
equipment are essential to prevent and limit the impact of accidents if they do occur. 
Upgrading fluid-disposal systems so that storage and separation tanks replace open 
pits (closed-loop systems) can reduce the risk of accidental discharge of wastes during 
drilling.

Treat water responsibly

	 Reduce freshwater use by improving operational efficiency; reuse or recycle, 
wherever practicable, to reduce the burden on local water resources. Regulations 
covering shale and tight gas production (coalbed methane operations are net producers 
of water) need to be designed to encourage operators to use water efficiently and to 
reuse and recycle it. The largest volumes of water are required for hydraulic fracturing: 
where the necessary economies of scale are present, it should be feasible to reuse 
and recycle significant volumes of the flow-back water from fracturing operations, 
reducing the issues and costs associated with truck traffic and with securing water 
supplies and wastewater disposal.

	 Store and dispose of produced and waste water safely. Within an overarching 
performance framework, rigorous and consistent regulations are needed to cover 
safe storage of waste water, with measures to ensure the robust construction and 
lining of open pits or, preferably, the use of storage tanks. Technology exists to treat 
produced and waste water to any standard, with the cost varying accordingly. It is 
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the responsibility of regulators to set and enforce appropriate standards based on 
local factors, including the availability of freshwater supplies and options for disposal, 
without diminishing the operators’ ultimate responsibility for operation in accordance 
with evolving best practice standards. The least-cost solution for producers may not 
be the most economically optimal solution, when the potential long-term benefits of 
using treated water and the wider social and environmental costs of discharges into 
water courses or evaporation ponds are taken into consideration.

	 Minimise use of chemical additives and promote the development and use of more 
environmentally benign alternatives. Disclosure of fracturing fluid additives can and 
should be compatible with continued incentives for innovation. The industry should 
commit to the development of fluid mixtures that, if they inadvertently migrate or 
spill, do not impair groundwater quality, or adopt techniques that reduce the need to 
use chemical additives.

Eliminate venting, minimise flaring and other emissions

	 Target zero venting and minimal flaring of natural gas during well completion and 
seek to reduce fugitive and vented greenhouse-gas emissions during the entire 
productive life of a well. Best practice is to recover and market gas produced during 
the completion phase of a well, and public authorities need to consider imposing 
restrictions on venting and flaring and specific requirements for installing equipment 
to help minimise emissions. Measures in this area will also lower emissions of 
conventional pollutants, including VOCs. Operators should consider setting targets 
on emissions as part of their overall strategic policies to win public confidence that 
they are acting to minimise the environmental impact of their activities, taking into 
account the financial benefits of commercialising the gas that would otherwise be 
vented or flared. The gas industry as a whole, including conventional gas producers 
and companies operating in the midstream and downstream, needs to demonstrate 
that they are just as concerned by methane emissions beyond the production stage, 
for example in transportation and distribution.

	 Minimise air pollution from vehicles, drilling rig engines, pump engines and 
compressors. Pollution from vehicles and equipment is often controlled by existing 
environmental and fuel-efficiency standards (it is a responsibility of governments 
to ensure that appropriate standards are in place). Operators and service providers 
should consider the advantages of deploying the cleanest vehicles and equipment 
available, for example, electric vehicles and gas-powered rig engines, to reduce both 
local air and noise pollution.
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Be ready to think big

	 Seek opportunities for realising the economies of scale and co-ordinated development 
of local infrastructure that can reduce environmental impacts. Investments in 
infrastructure to reduce environmental impacts that may be commercially impossible 
to justify for an individual well can be justified for a larger development. Good regulation 
can help to realise these gains by ensuring appropriate spatial planning of licensing 
areas and of the associated infrastructure (such as access roads, water resources 
and disposal facilities, gas processing units, compression stations and pipelines). The 
concept of utility corridors and multi-use rights of way can be useful to concentrate 
infrastructure development and so limit the wider environmental impacts. Operators 
can realise these gains in various ways, for example by drilling multiple wells from a 
single pad (with horizontal bores tapping different parts of the reservoirs): this may 
result in greater disruption in the immediate vicinity of the site but can significantly 
reduce the wider environmental footprint. Another example is the construction of a 
pipeline network for water that requires upfront investment but obviates the need for 
many thousands of truck movements over the duration of a project and can lower unit 
costs.19 Good project and logistical planning by operators needs to go hand-in-hand 
with early strategic assessments and timely interventions by public authorities. 

	 Take into account the cumulative and regional effects of multiple drilling, production 
and delivery activities on the environment, notably on water use and disposal, land 
use, air quality, traffic and noise. Development of any hydrocarbon resource involves 
a large amount of activity to build the necessary infrastructure, bring in supplies, 
drill wells, extract the resource, process it and transport it to market. This activity is 
enhanced for unconventional developments, because of the larger number of wells 
required. As a result, the level of activity that might be tolerable for individual wells, 
such as volumes of road traffic, land and water use or noise from drilling activity, can 
increase by orders of magnitude. Regulators need to assess the cumulative impact of 
these effects and respond appropriately. Assessment on a regional basis is particularly 
important in the case of water requirements.

19.  See the next sub-section for an assessment of the impact of such infrastructure developments on project 
costs; this is also covered in a recent paper on water management economics for shale gas developments 
(Robart, 2012).
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Ensure a consistently high level of environmental performance

	 Ensure that anticipated levels of unconventional gas output are matched by 
commensurate resources and political backing for robust regulatory regimes at 
the appropriate level, sufficient permitting and compliance staff, and reliable 
public information. An important focus for governments should be on ensuring 
there is a sufficient knowledge base on all environmental and technical aspects of 
unconventional gas development, that high-quality data are available and that sound 
science is being applied and promoted. Well-funded, suitably skilled and motivated 
regulators, in sufficient numbers, are essential to the responsible development of an 
unconventional resource. 

	 Find an appropriate balance in policy-making between prescriptive regulation and 
performance-based regulation in order to guarantee high operational standards 
while also promoting innovation and technological improvement. In some areas, 
detailed rules and checks are indispensable to guarantee environmental performance; 
but it is not always possible, or desirable, to regulate every aspect of a process in which 
technology is moving rapidly. Setting performance criteria and allowing operators to 
find the best way to meet them can often provide a better outcome than a prescriptive 
approach. Examples of performance criteria might be a mandated minimum level of 
improvement in water usage or a requirement that a “best-in-class” cement quality 
measurement is run, the burden being on the operator to prove the use of best-in-
class. Whichever approach or combination of methods is chosen, there needs to be 
strict enforcement and penalties in the case of non-compliance, ultimately including 
loss of the licence to operate.

	 Ensure that emergency response plans are robust and match the scale of risk. 
Operators and local emergency services should have robust plans and procedures in 
place to respond quickly and effectively to any accident, including appropriate training 
and equipment.

	 Pursue continuous improvement of regulations and operating practices. Technology 
and best practice are constantly evolving. While respecting the advantages of clarity 
and stability in regulation, governments must be ready to incorporate lessons learned 
from experience in a dynamic industrial sector. For industry, following best practice 
means constant readiness to raise standards and providing the means to meet them.

	 Recognise the case for independent evaluation and verification of environmental 
performance. Credible, third-party certification of industry performance can provide a 
powerful tool to earn and maintain public acceptance, as well as providing a powerful 
tool to assist companies to adhere to best practices. These independent assessments 
should come from institutions that enjoy public trust, whether academic or research 
institutes or independent regulatory or certification bodies.
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1Complying with the Golden Rules
Application of these Golden Rules requires action to be taken by both governments and 
industry. While the ultimate responsibility for sustaining public confidence rests with the 
industry, it is governments that that need to set the regulatory framework, promulgate 
the required principles and provide support through many related activities, e.g. scientific 
research. Trying to specify precisely the roles of governments, gas producers and other 
private sector operators in each area is not practicable on a global scale. Conditions vary 
from country to country, including the legal, geological, social and political background, 
farming/land-use practices, water availability and many others.20 But the general principles 
are clear and, in the sections that follow which examine the implications of the Golden 
Rules for governments and for industry, we have included some observations on the 
allocation of responsibilities between the public authorities and operators. 

Implications for governments

Ensuring responsible development of unconventional gas resources, in line with 
these Golden Rules, puts substantial demands on policy-makers and regulators. First 
and foremost, the intensive nature of unconventional gas developments – and the 
scope for rapid growth in unconventional supply discussed in Chapter  2 – means that 
existing regulatory arrangements may have to be revised and licensing, compliance 
and enforcement staff reinforced. The need for new regulatory bodies may need to be 
considered or, more likely, existing ones may require new resources, functions and powers. 
This reinforcement of capacity needs to anticipate the expansion of industrial activity, so 
an appropriate regulatory regime is in place in good time. In keeping with regulatory best 
practice, such regulators will need to be independent of industry (although this certainly 
does not exclude ongoing consultation with industry), and have the right (often new) skills 
and funding. Scope exists to secure the necessary funding from industry in advance of 
development, for example through fees attached to the award of exploration rights.

The overarching challenge for policy-makers, to find the right balance between the need 
to minimise adverse environmental and social impacts while encouraging the responsible 
development of resources for the benefit of the local and national economy, will require 
judgement at the highest political level. Once that judgement is made, operational 
decisions of considerable weight remain to be made, for example as to the level of detail 
required in regulating industry operations – detailed or prescriptive provisions may be 
necessary, but they can also deny legitimate scope for operators to minimise costs and can 
impose onerous monitoring and enforcement responsibilities on regulators; performance-
based regulation can work better in many areas, particularly for an industry in which 
technology is changing quickly.

20.  Examples of regulation and best practice, from different countries, in areas covered by these Golden Rules 
are available on the IEA website at http://www.worldenergyoutlook.org/goldenrules.
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In a number of jurisdictions, significant advances have been made in regulatory arrangements 
in recent years. However, the situation is very dynamic and industry has the capacity to 
expand rapidly; governments in resource-rich areas need to act quickly to anticipate future 
needs and to put the necessary measures in place. The challenge for governments and 
regulators can be acute in relation to water resources and the risk of water contamination. 
Rigorous data collection, assessment and monitoring of water requirements (for shale and 
tight gas), and measurement of the quality of produced water (for coalbed methane) and 
of waste water (in all cases) are needed to allow informed decisions to be made. Existing 
users are deeply suspicious that their rights and water availability might be compromised. 
There is a need, among other things, for transparent, speedy and equitable procedures for 
compensating existing users who suffer loss.

Box 1.6 ⊳  Getting the market setting right

Alongside attention to environmental issues, there are many other policy areas that 
affect the prospects for unconventional gas development, including: the terms for 
access to resources; clarity on mineral rights; a consistent fiscal and overall investment 
framework; the provision of infrastructure; and the structure and regulatory 
framework in a given market (see also the assumptions underpinning the projections 
in Chapter 2). Market developments are at varying stages in different countries and 
regions. North America has well-functioning gas markets and, to take one example, 
many observers consider reliable third-party access to pipelines has been a pivotal 
part in its unconventional gas development by giving gas producers confidence that 
their new gas output will be able to reach market. Other key supportive market or 
regulatory conditions for gas production (both conventional and unconventional) 
include: the removal of wellhead price controls; the absence of undue restrictions on 
trade and export; a competitive upstream environment that encourages innovation; 
and efficiency and market-based pricing for gas. While these market conditions have 
been under discussion for many years in most OECD jurisdictions, implementation of 
the necessary reforms remains at best incomplete; and the challenges are greater in 
many non OECD countries. 

Governments everywhere have a central role in ensuring a sound, scientific, credible, 
knowledge base is publicly available prior to widespread development. Policy-makers and 
regulators themselves need access to the necessary expertise in order to understand and 
mitigate the environmental risks.21 Baselines for various indicators, water in particular, 
are critical in this regard, but this requirement also encompasses basic geological and 
geophysical information. Good quality data are essential, not just as an input to good 

21.  An example is the decision of the Australian Government in late 2011 to establish an expert Scientific 
Committee, funded with AUD 150 million ($150 million) over four years, to oversee regional assessments and 
research on water-related impacts in areas where coalbed methane developments are proposed.
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1
policy-making, but also to make it possible to demonstrate that the regulatory system is 
functioning effectively and to identify areas where improvements are needed.

Within large federal systems (for example the United States, Canada and Australia) 
environmental powers are usually exercised at state or provincial level, facilitating 
approaches that respond to local factors, such as the geology, the chosen technology and 
specific environmental risk factors. Local social and environmental concerns are often 
best dealt with at local levels. Clarity is often required as to the division of responsibilities 
between different levels of government, with the national authorities responsible for 
ensuring reasonable consistency of regulation and that adequate funding is available 
for region-wide work (for example, in river systems that cross internal or international 
boundaries).

Figure 1.6 ⊳  Stages in an unconventional gas development
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Note: The stages, milestones and permits shown here are not unique to unconventional developments, but 
the distinctive element is the overlap between stages of development, as opposed to a more sequential 
pattern for a typical conventional project.

Differences between the way in which conventional and unconventional resources are 
developed need to be taken into account in designing an effective legal and regulatory 
system. Conventional oil and gas developments generally follow a fairly well-defined 
sequence, but the distinctions between the phases of an unconventional development can 
be much less clear-cut – development generally proceeds in a more incremental fashion 
(Figure  1.6).22 At any given time an operator may be exploring or appraising part of a 

22.  Often, the initial question is not whether the unconventional resource exists but whether the gas or liquids 
can be produced in a particular location at economic flow rates. Whereas each appraisal well of a conventional 
reservoir tends to increase knowledge about the overall reservoir structure and its limits, it is much more 
difficult with an unconventional play to extrapolate the results of individual appraisal wells to the acreage as a 
whole. 
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licence area, developing another part and producing from a third, with different regulatory 
approvals and permits applying at each stage. The blurred lines between the stages of an 
unconventional resource project development increase the complexity of the interactions 
between operator and regulators (and between the operator and local communities) 
throughout the life cycle of the development. For example, the regulatory system in most 
jurisdictions requires the submission and approval of a detailed field development plan at 
the end of the exploration phase. However, the longer learning curve for unconventional 
plays makes it much more difficult to develop comprehensive plans at this stage, with the 
risk that relatively small subsequent alterations might trigger the need to resubmit and re-
approve the entire development plan – a lengthy and burdensome process for both sides.

Beyond their focus on the proper construction of individual wells and installations, 
regulators also need to take a broader view of the impact of multiple projects and wells 
over time. This broader scope is essential when it comes to assessments of water use 
and disposal and of future water requirements, but can be also required in other areas, 
including land use, air quality, traffic and noise. In general, a regulatory system that focuses 
primarily on well-by-well approvals rather than project level authorisations, can fail to 
provide for some environmental risks and miss opportunities to relieve them. For example, 
there are investments in infrastructure that may not proceed for an individual well but 
which would serve appreciably to reduce the cumulative environmental impacts of large-
scale development, such as centralised water treatment plants or pipeline networks for 
water supply or removal (see below). One of the ways that a regulatory framework can 
facilitate this sort of investment is through issuing licences for sufficiently large areas and 
durations.

Governments are usually instrumental in promoting the co-ordinated and timely expansion 
of regional infrastructure alongside a gas development, including either directly putting in 
place alternatives to road transportation or ensuring that the regulatory framework serves 
to encourage or require the construction of gas transportation capacity or an expansion 
of local power supply. Either way, strong co-ordination and communication is necessary 
between different branches and levels of government, as the rapid growth of a new industry 
puts pressure not only on the local physical infrastructure, but also on local social services.

Implications for industry

All parts of the unconventional gas industry have to contribute to proving to society that 
the benefits of unconventional gas development more than offset the costs in social and 
environmental terms. This entails, among other things, demonstrating that environmental 
and social risks are being properly addressed at all stages of a development: adoption and 
application in full of these Golden Rules is one way to support and accelerate this process. 
Elements of these Golden Rules are already being applied today, incorporated into best 
practice or embodied in regulation. The challenge is to ensure that the highest reasonable 
standards are in place and are applied and enforced in a consistent and credible way across 
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1
the industry. Companies have to convince society that they have both the interest and the 
incentive to constantly seek ways of improving their performance.

There is a cost entailed. Compliance with these Golden Rules can in many cases increase 
the overall financial cost of development. How much will vary, depending on the starting 
point and on how each jurisdiction formulates its rules but, based on our analysis of the 
impact on the costs of a typical 2011 shale gas well (presented below), the additional costs 
are likely to be limited. For a single well, application of the Golden Rules can add around 
7% to the overall cost of drilling and completion. The increase in costs could be significantly 
lower when considered across a full development project, as additional upfront capital 
costs incurred to reduce environmental impacts can, in many cases, be offset by lower 
operating costs.

Major cost elements in a shale gas well

The major cost elements in the drilling and completion of a shale gas well are the rig and 
associated drilling services, and the hydraulic fracturing stage of well completion. Well 
construction costs are primarily influenced by the geographical location, the well depth 
and, to some extent, reservoir pressure, and by the market and infrastructure conditions 
in the country or region under consideration. For example, a typical onshore shale gas well 
in the Barnett shale in Texas may currently cost $4 million to construct, while a similar well 
in the Haynesville shale costs twice as much, because of the depth and pressure. A similar 
well in Poland might cost $10 million to $12 million, because the current size of the market 
means that the drilling and service industry is much less developed in Poland than in the 
United States.

In general, more technical services are required during drilling and completing a shale 
or tight gas well than for a similar onshore conventional gas well, which makes it more 
expensive. The cost of multi-stage hydraulic fracturing can add anything between $1 million 
and $4 million to the construction costs of a well in the United States, depending on location, 
depth and the number of stages. In a shale reservoir, when drilling a well with a long lateral 
section, roughly 40% of the total cost goes toward the drilling and associated hardware 
and the remaining 60% to well completion, of which multi-stage hydraulic fracturing is the 
largest component. In a conventional well, the completion cost would be only about 15% 
of the overall well cost.

Break-even costs of shale-gas production in the United States have fallen sharply in recent 
years, thanks to an increase in the proportion of horizontal wells, the length of horizontal 
sections and the number of hydraulic fracturing stages per well, as well as the benefits 
of ever-better knowledge and experience of the various resource plays. The share of 
horizontal wells in the total number of shale-gas wells drilled increased from less than 10% 
in 2 000 to well over 80% today. Over the same period, the average length of the lateral 
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sections has increased from around 800 metres to well over 1 200 metres and the typical 
number of hydraulic fracturing stages has risen from single figures to around 20.23

Operational costs, similarly, vary with local conditions: for example, just as for drilling, 
operating costs in Europe are expected to be 30% to 50% higher than in the United States for 
a similar shale gas operation. Dry gas requires less processing than wet gas (gas containing 
a small fraction of liquid hydrocarbons), but also has lower market value, particularly in the 
current context of very high oil-to-gas price ratios in some markets.

It is worth noting that two of the key subsurface drivers of well cost – depth and well 
pressure – are expected to be higher in many of the areas being explored outside North 
America. On the other hand, for all unconventional deposits, there is considerable potential 
for cost savings through organising development so as to exploit economies of scale, 
learning, and optimising well selection and locations for hydraulic fracturing.

Impact on the cost of a single well

The typical shale gas well that we use as a basis for this analysis is not a “worst case” but 
rather a well of the type that was regularly drilled in 2011 into deep shale reservoirs (such 
as the Haynesville and Eagle Ford shale plays) in the United States, taking in many industry 
best practices that were not always systematically followed in the previous decade. The 
well is assumed to reach a vertical depth of the order of 3 000 metres, have a horizontal 
section of around 1 200 metres and be completed with 20 fracture stages using a total of 
2 000 tonnes of proppant and 15 000 cubic metres of water (requiring 500 trucks). This 
type of well would typically be drilled in three sections of successively smaller diameter, 
each one being lined with steel casing and cemented in place before the next section is 
drilled.24 The well considered is a development well rather than an exploratory well.

Such a well might be expected to cost $8  million, take a month to drill and a further 
month to complete. The hydraulic fracturing process accounts for around 40% of the total 
well cost – around twice as much as the second most expensive item, the rig itself. By 
comparison, a typical onshore conventional vertical gas well in the same area would cost 
around $3 million, with 40% being spent on the rig. 

23.  Some wells have lateral sections reaching up to 3 000 metres in length, with up to 40 individual geological 
zones for hydraulic fracturing, carried out one at a time. However, there are practical mechanical limits to 
the length of horizontal sections and multi-stages due to the pressure and temperature effect on the casing 
which mean that laterals longer than 1 800 metres or more than 20 fracture stages carry more mechanical risk 
(Holditch, 2010).
24.  Since the well being considered already had two barriers over the shallow aquifer region with hydrocarbons 
being produced through production tubing, we did not include an additional casing string in our calculation of 
the additional costs of compliance.
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1
Applying the Golden Rules to this well would be expected to have the following effects on 
costs, summarising various elements of the Rules under four indicative headings:

	 Isolate wells and prevent leaks: measures in this area could include increased 
spending on cement design, selection and verification, coupled with a slight increase 
in drilling time to ensure the quality of the well-bore and provide a contingency for 
remedial cementing, if required. For the purposes of our analysis, we have assumed 
that the cement would be designed to withstand all expected stresses over the life 
span of the well, including the stresses induced during the 20 stages of hydraulic 
fracturing. The well would be drilled with appropriate tools and mud to produce a 
smooth and regular well-bore, to ensure that the cement bonds tightly with the wall 
of the well. Flexible cements or cements incorporating other technical advances that 
give better performance against the design criteria would be used. The cement would 
be pressure-tested and measurements taken to validate the quality of the cement 
bond on the exterior casing wall, with a contingency for remedial work if required. 
The American Petroleum Institute (API) publishes comprehensive standards and best 
practices pertaining to the construction of wells to ensure their integrity so that they 
are leak-free. In our analysis, 10% was estimated as the increment to drilling and 
cementing service costs needed to take account of these measures.

	 Eliminate venting, minimise flaring and other emissions: this could be achieved 
by installing separator equipment for the hydrocarbons when they are brought to 
surface. For the purposes of our analysis, we have estimated a 10% addition to the 
cost of services required during the flow-back phase (but have not assumed that it is 
offset by sales of the recovered oil or gas25).

	 Treat water responsibly: measures in this area could involve upgrading of fluid-
disposal systems to ensure zero discharge at any stage and maximum re-use of water, 
as well as the use of green fracturing fluids with minimum chemical additives. In our 
analysis, 10% has been added to the cost of hydraulic fracturing on this basis, and a 
further 10% to the cost of rig fluids and disposal.

	 Disclose and engage: responsiveness to local community concerns might involve 
reducing the noise from rig operations by cladding the rig with sound-proof material 
or imposing trucking restrictions at times at which they would otherwise cause 
greatest local disturbance or risk of accident. $20 000 has been added to the rig cost 
to cover sound-proofing of the rig and 10% to the logistics cost to cover some trucking 
restrictions. 

In addition to these measures, we have included other actions that would add little to the 
cost of operations but would increase understanding of the environmental impact of shale-
gas operations and facilitate dialogue with stakeholders. Simple measurement of airborne 

25.  According to the US EPA (EPA, 2011), general adoption of this type of “green completion” could also cut 
emissions of VOCs from new hydraulically fractured gas wells by 95%. The EPA further estimates that operators 
could expect to recover the additional cost associated with green completions within 60 days through the sale 
of captured hydrocarbons.  
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emissions at well sites in a consistent manner would provide valuable information to 
narrow the uncertainty around the extent of fugitive emissions of methane. Similarly, tests 
of local water wells that draw from an aquifer being drilled through would determine if 
there was contamination from any source. In total, we estimate that all the measures listed 
above would add around $580 000, or 7%, to the overall cost of drilling and completing this 
shale-gas well (Figure 1.7).

Figure 1.7 ⊳ � Impact of the Golden Rules on the cost of a single deep  
shale-gas well
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Services include various services, other than hydraulic fracturing services, that are used in well construction: 
directional drilling services, cementing services, casing services, wire line and testing services.

Source: IEA analysis.

Impact on larger-scale developments

In practice, within a single licensing area, each operator typically drills a large number of wells 
at different sites. Applying the Golden Rules to entire unconventional gas developments 
could diminish the impact on overall production costs, because of economies of scale. While 
many of the environmental impacts discussed earlier in this chapter demand action chiefly 
where the scale of operations is large, large-scale operations also provide opportunities 
to minimise or eliminate environmental risks by optimising the process of drilling and 
completing each well. As the size of a development increases, measures to reduce 
environmental effects become both necessary and economically feasible (Figure  1.8), in 
a way that may not be possible for a single well.26 In the case of gas, water and potentially 

26.  Many best practices can and should be applied to all wells, regardless of the size of the development. 
However, practices such as pad drilling, zero flaring and the minimisation of diesel emissions or trucked water 
involve the installation of infrastructure that, as well as not being cost effective, might even cause more 
environmental disruption if serving only single wells. For example, the number of truck journeys required to 
install water pipelines to a single isolated well would probably be more than the number of truck journeys 
required for the water itself.
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1
electricity networks, greater upfront capital expenditure is required, but operating costs 
can be reduced, leaving the overall economics of a large-scale development no worse and 
in some cases improved.

Figure 1.8 ⊳ � Indicators of best practice as unconventional gas 
developments grow in size 
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A well thought-out field development plan, based on a thorough environmental impact 
assessment, can help to capture these economies of scale and ensure that the hazards are 
well identified and that preventative or mitigating measures are in place. A key assumption 
in our analysis is that operators are able to plan developments optimally, both in space 
and in time. For this, licensing areas need to be large enough and be held for periods 
that are long enough for efficient development planning and the sharing of infrastructure. 
This needs a supportive regulatory framework.27 Realising these gains also tends to rely on 
early investment in project infrastructure, often before production comes on stream and 
revenues start to flow: this can be a constraint for smaller companies, particularly where 
they are investing in marginal developments.

27.  In certain regions of the United States, this is not possible due to smaller acreage blocks and lease 
expiration acting as a driver for development planning.
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Good logistics and project planning is essential, both from the industry and from the public 
authorities, in view of the envisaged scale of a development. It is particularly important 
that infrastructure development keeps pace with upstream activity as the consequences 
of failure to do so can fall on the environment. For example, Figure 1.9 illustrates how the 
rapid development of light tight oil production in the Bakken shale was accompanied by a 
rise in the flaring of associated gas, as the necessary increase in gas transport infrastructure 
did not occur at the same pace as the increase in drilling.

Figure 1.9 ⊳  �Monthly natural gas production and flaring in North Dakota 

 

 

 
0 

100 

200 

300 

400 

500 

Jan 2002 Jan 2004 Jan 2006 Jan 2008 Jan 2010

m
cm

 

0%

10%

20%

30%

40%

50% Produc�on 

Sales 

Share of gas flared 
(right axis) 

Source: North Dakota Mineral Resources Department.

For the purposes of our analysis of the implications of applying the Golden Rules at scale, 
we considered a development of 120  wells per year.28 In order to be able to plan and 
implement the types of measures described in Figure 1.8, the licensing area would need 
to comprise contiguous blocks and be held for at least a ten-year period, with freedom to 
develop according to the best environmental plan (rather than drilling to retain leases or 
avoid relinquishment clauses). 

For this scale of development, we envisaged the following:

	 Zero venting or flaring of gas at all stages of operations: this would require the 
installation of test equipment and gas-gathering infrastructure before any wells are 
completed. The scale of operation would mean that it would be economically viable to 
have this equipment dedicated to the development, although it remains challenging 
to estimate expected production rates with sufficient accuracy to ensure that the 
infrastructure is correctly sized. The early installation of gas-gathering infrastructure 
would bring forward capital expenditure, but would not increase the net cost, as any 
additional charges, including interest charges, would probably be offset by the value of 
the gas captured. Estimated cost impact on a large-scale development: neutral.

28.  We considered ten rigs drilling eight wells from each pad, where the drilling phase of each well lasts 
30 days, including the rig move. Thus, each rig would move every eight months to a new pad location.
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1
	 Zero in-field trucking of water within the concession area: this is an area where 

regulation and licensing requirements can play an important role. If these facilitate the 
necessary investment, capital expenditure on building water supply pipelines could be 
offset over the ten-year period by the reduction in truck movements. Estimated cost 
impact: neutral.

	 Central purpose-built water-treatment facilities: these facilities, allowing closed-loop 
recycling of waste water, could be linked by pipeline to each pad location. They would 
reduce the overall water supply required for operations and minimise the need for off-
site disposal, thereby reducing total transportation, water and disposal costs. Based 
on industry case studies, we estimate savings at $100 000 to $150 000 per well.

	 A long-term monitoring program for the development: this could take different forms 
but might include performing a 3-D seismic survey over the licensing area before 
drilling commences to establish a geological baseline for the location of faults and 
sweet spots, as well as the temporary or permanent installation of micro-seismic 
monitoring to monitor seismic events and the propagation of fractures, and the 
installation of equipment to monitor the quality of water in aquifers that are being 
drilled through. We estimate the additional cost of these three measures at between 
$100 000 and $150 000 per well.

	 Systematic learning about the shale: this could involve taking the opportunity 
provided by each well to learn more about the reservoir by capturing data (typically by 
using down-hole measuring instruments) that will enable the character and behaviour 
of the shale to be better understood. This understanding is an important contributory 
factor in improving the operational performance (and therefore the environmental 
impact per unit of production) of each well drilled and in eliminating wells and fracture 
stages that do not contribute significantly to production. We estimate the additional 
cost at $200 000 per well.

Most of these measures would involve a marginal increase in the overall cost of a large-
scale development. But there is potential for reducing costs through better planning of 
operations, which would also reduce environmental risks:

	 Exploiting economies of scale: pad drilling and the associated ability to carry out 
simultaneous operations on more than one well has been shown to bring significant 
cost savings as well as reducing the total surface footprint. Typically the drilling phase 
of a number of wells on the pad would be finished first, enabling the completion 
phase to be carried out for multiple wells in parallel. “Simultaneous operations” of 
this sort can allow for more efficient use of equipment for hydraulic fracturing. The 
US company, Continental Resources, has reported a 10% drop in average well cost in 
the Bakken Shale, from $7.2 million to $6.5 million, by using such an approach at eight 
well pads. Other industry sources report savings of up to 30%, due to a combination of 
economies of scale and improvements in operational efficiency. On this basis, we have 
estimated savings of 10% per well. 
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	 Optimising the number of fracture stages: this can achieved by acquiring better 
information about where the sweet spots are likely to be and fracturing only in those 
zones, rather than simply fracturing every 100 metres, with no science applied. Industry 
data from different shale plays in the United States show that, on average, between 
30% and 40% of fractures do not contribute any production at all. We have assumed 
conservatively that at least two hydraulic fracturing stages out of twenty could be 
saved as a result of better reservoir characterisation by systematically learning about 
the shale. This would represent a cost saving of around $400 000 per well or equivalent 
gains in production for the same number of stages.

	 Learning from experience: there is a learning curve associated with the drilling 
and completion of shale-gas wells that, on a large scale of development, can bring 
significant cost savings as time goes on: these savings are often quoted in conjunction 
with economies of scale and the optimisation of fracture stages. For the purposes of 
our analysis, we have not added any additional saving related to the learning curve.

Summing up the effects of the more stringent environmental measures applied to the 
development and the efficiency savings from better planning yields an overall net cost 
saving of approximately 5%. Most of these savings come from economies of scale and 
reduced hydraulic fracturing, which more than offset the additional cost of implementing 
well-specific measures and monitoring environmental effects.

There is potential for even larger cost savings in large-scale developments by optimising 
the number and location of wells drilled. Given the enormous variability in geology, there 
are significant variations in the economics of unconventional gas wells, driven largely by 
differences in the expected cumulative output of each one (referred to as Estimated Ultimate 
Recovery [EUR]). The ability of operators to locate sweet spots within an unconventional 
gas play, where output is particularly high, (or their good fortune in doing so) explains a 
large part of the difference in EUR between wells. The adoption of advanced technologies 
in drilling and completing wells can also help to increase EUR. 

At present, in the vast majority of shale gas developments wells are drilled and hydraulically 
fractured “geometrically”, that is to say at regular intervals, without regard for the changing 
geology between those intervals. Some wells give very good initial production and others 
close to zero. A detailed study of more than 7  000  wells in the Barnett Shale in WEO-
2009 showed that half of the horizontal wells drilled were unprofitable, even at the 2009 
gas price of $6 per MBtu, while some others were profitable at much lower prices (IEA, 
2009). This reflects differences in the amount of gas produced, itself a reflection of the local 
geology of the formation, but also of differences in the suitability and effectiveness of the 
well design and hydraulic fracturing operations. Reservoir characterisation and modelling 
techniques for shales is applied only in a limited manner at present. It is not unreasonable 
to expect that, had there been smarter selection of drilling targets, the least profitable 
20% of wells in our sample would not have been drilled at all. Better understanding of the 
science of hydrocarbon flows within unconventional gas reservoirs is needed for improved 
reservoir characterisation and modelling to be achieved (Box 1.7). 
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1Box 1.7 ⊳  The potential benefits of better petroleum science

For all the advances that have been made in shale gas production in the United States 
in recent years, a large number of wells that prove to be very unproductive are still 
being drilled. Often, the value of the gas and liquids they yield is insufficient to cover 
the cost, the losses on such wells generally being offset by other wells that prove to 
be very productive. In addition, recovery factors for shale gas and light tight oil are 
very low, compared to conventional reservoirs: estimates in most cases do not exceed 
15% of the original oil and gas in place. A better scientific understanding of both the 
geological structure and hydrocarbon flows within shale and tight gas rock should allow 
producers to target better and to refine their drilling and well-completion operations, 
driving down the number of unproductive wells and pushing up the estimated ultimate 
recovery – a tremendous prize for all stakeholders.

Thus far, improvements in unconventional gas technology have largely been concerned 
with how, on a cost-effective basis, to pump more fluid into more fracture stages in 
longer horizontal sections in order to increase reservoir contact, and how to better 
manage the environmental effects. But while advances in drilling and hydraulic 
fracturing technology have unlocked unconventional reserves that were previously 
uneconomic, the science of the behaviour of the reservoirs is still not well understood. 
This makes it very hard to predict decline rates and the ultimate production potential 
of each play and individual areas and wells. Traditional methods of computer modelling 
and simulation of oil and gas reservoirs do not work well in the case of shale gas or 
light tight oil.

This scientific challenge has attracted a significant research effort from industry experts 
and academia. Breakthroughs in understanding the behaviour of shale and tight-gas 
reservoirs are expected and are likely to trigger a shift from the current “brute force” 
approach to production towards a more scientific one, enabling operators to avoid 
drilling poor wells and using ineffective well-completion methods. This would allow 
for more efficient use of water and other resources, minimising the environmental 
footprint and lowering production costs.
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Chapter 2

The Golden Rules Case and its counterpart
How might unconventional gas re-shape energy markets?

Highl ights

•	 In a Golden Rules Case, we assume that the conditions are in place, including the 
application of the Golden Rules, to allow for an accelerated global expansion of gas 
supply from unconventional resources, with far-reaching consequences for global 
energy markets. Greater availability of gas supply has a strong moderating impact on 
gas prices and, as a result, demand for gas grows by more than 50% to 2035 and the 
share of gas in the global energy mix rises to 25% in 2035, overtaking that of coal. 

•	 Production of unconventional gas, primarily shale gas, more than triples in the Golden 
Rules Case to 1.6  tcm in 2035. The share of unconventional gas in total gas output 
rises from 14% today to 32% in 2035. Whereas unconventional gas supply is currently 
concentrated in North America, in the Golden Rules Case it is developed in many other 
countries around the world, notably in China, Australia, India, Canada, Indonesia and 
Poland.

•	 The Golden Rules Case sees a more diverse mix of sources of gas in most markets, 
suggesting an environment of growing confidence in the adequacy, reliability and 
affordability of natural gas supplies. An increased volume of gas, particularly LNG, 
looking for markets in the period after 2020 stimulates the development of more liquid 
and competitive international markets. The projected levels of output in the Golden 
Rules Case would require more than one million new unconventional gas wells to be 
drilled worldwide between now and 2035.

•	 In a Low Unconventional Case, we assume that – primarily because of a lack of public 
acceptance – only a small share of unconventional gas resources is accessible for 
development and, as a result, global unconventional gas production rises only slightly 
above 2010 levels by 2035. The competitive position of gas in the global fuel mix 
deteriorates as a result of lower availability and higher prices, and the share of gas in 
global energy use remains well behind that of coal. The requirement for imported gas is 
higher and some patterns of trade are reversed, with North America needing significant 
quantities of imported LNG, and the preeminent position in global supply of the main 
conventional gas resource-holders is reinforced. 

•	 Although the forces driving the Low Unconventional Case are led by environmental 
concerns, it is difficult to make the case that a reduction in unconventional gas 
output brings net environmental gains. The effect of replacing gas with coal in the 
Low Unconventional Case is to push up energy-related CO2 emissions, which are 1.3% 
higher than in the Golden Rules Case. Reaching the international goal to limit the long-
term increase in the global mean temperature to two degrees Celsius would, in either 
case, require strong additional policy action.
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Paths for unconventional gas development
There are factors on both the demand and supply sides pointing to a bright future for 
natural gas, but the key element in the supply outlook is the growth in production of – 
and expectations for – unconventional gas resources. For the moment, production of 
unconventional gas is still overwhelmingly a North American phenomenon: in 2010, 76% 
of global unconventional gas output came from the United States (360 billion cubic metres 
[bcm]) and a further 13% from Canada (60  bcm). Outside North America, the largest 
contribution to unconventional gas production came from China and Australia, producing 
around 10 bcm and 5  bcm of coalbed methane, respectively.1 But, in light of the North 
American experience and with evidence of a large and widely dispersed resource base, 
there has been a surge of interest from countries all around the world in improving 
their security of supply and gaining economic benefits from exploitation of domestic 
unconventional resources.

Box 2.1 ⊳ � Overview of cases

This chapter sets out projections from two cases, for the period to 2035, which explore 
the potential impact and implications of different trajectories for unconventional gas 
development. 

•	 A Golden Rules Case, to which the main part of this chapter is devoted, assumes that 
the conditions are put in place to allow for a continued global expansion of gas supply 
from unconventional resources. This allows unconventional gas output to expand 
not only in North America but also in other countries around the world with major 
resources.

•	 A Low Unconventional Case considers the opposite turn of events, where the tide 
turns against unconventional gas, as environmental and other constraints prove too 
difficult to overcome. 

These projections are assessed against an updated baseline, which takes as its starting 
point the central scenario (the New Policies Scenario) from the most recent World 
Energy Outlook, WEO-2011. The two main cases test a range of favourable and 
unfavourable assumptions about the future of unconventional gas. A necessary, but not 
sufficient, condition of the Golden Rules Case is the effective application of the Golden 
Rules, in order to earn or maintain the “social licence” for the industry to operate. 
Neither case is advanced as more probable; they are rather designed to inform the 
debate about the implications of different policy choices for energy markets, energy 
security and for climate change and the environment.

1.  A proportion of gas production in Russia is classified as unconventional, tight gas.
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The potential is there for unconventional gas supply to grow rapidly in the coming 
decades, but the speed at which this supply will grow is still highly uncertain. Outside 
North America, the unconventional gas business is in its formative years, with major 
questions still to be answered about the extent and quality of the resource base and the 
ability of companies to develop it economically. Moreover, as discussed in Chapter 1, 
social concerns about the impact of producing unconventional gas, particularly the threat 
of unacceptable environmental damage, have risen as production has grown. Reports of 
water contamination, earthquakes, and other disruptions to local communities have given 
unconventional gas production, and the practice of hydraulic fracturing in particular, a bad 
name in many countries.

It remains to be seen how this social and environmental debate will play out in different 
parts of the world. In parts of Canada, the United States and Australia, moratoria have 
been placed on hydraulic fracturing, pending the results of additional studies on the 
environmental impact of the technology. Even in advance of any commercial production, 
similar prohibitions are already in force in parts of Europe. There is a distinct possibility 
that, if these concerns are not directly and convincingly addressed, then the lack of public 
acceptance in some countries could mean that unconventional production is slow to take 
off, or, indeed, falters at the global level. 

This chapter examines two scenarios, the Golden Rules Case and the Low Unconventional 
Case (Box 2.1), in the first of which these challenges are overcome and a second in which 
they are not successfully addressed. The difference in outcomes between them posits 
a critical link between the way governments and operators respond to these social and 
environmental challenges and the prospects for unconventional gas production. The 
strength of this link differs among countries depending on the ways that public concerns 
and perceptions of risk affect political decision-making. But the assumptions underlying 
these cases reflect our judgement that the development of this relatively new industry is 
contingent, in many places, on a degree of societal consent that in some places has yet 
to be achieved. Moreover, the perception of the industry as a whole is likely to be cast by 
the performance of its weakest players, not its strongest. Without a general and sustained 
effort from both governments and operators, the public may not be convinced that the 
undoubted benefits outweigh potential risks.

Golden Rules and other policy conditions

The Golden Rules, presented and discussed in Chapter 1, are principles designed to 
minimise the undesirable effects of unconventional gas production on society and the 
environment. Implementing such principles is in many cases a question of appropriate 
regulation; but this is not the whole story. The task for policy-makers and regulators is to 
find the right equilibrium that deals convincingly with social and environmental concerns 
without removing the economic incentives for developing an important national resource. 
This balance will vary from country to country, given differing energy security, economic 
and environmental priorities. 
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In the Golden Rules Case, we assume that all resource-rich countries formulate their 
approach to environmental regulation of unconventional gas production in line with these 
principles and thereby achieve a level of environmental performance and public acceptance 
that provides the industry with a “social licence to operate”. In that sense, the Golden Rules 
become a necessary (but not sufficient) condition for a wide expansion of unconventional 
gas supply. 

In the Low Unconventional Case, this balance is not found and the Golden Rules are 
either not adopted or inadequately applied. Whether in response to new incidents of 
environmental damage or evidence of poor industry performance, the potential social 
and environmental threats are deemed to be too significant in some countries or regions, 
to the extent that there are substantial obstacles to developing the resource. Longer-
lasting prohibitions are imposed in some countries on technologies that are essential to 
unconventional gas development, such as hydraulic fracturing, or exclusion zones are 
created and tight restrictions applied to drilling locations that restrict access to all or part 
of the resource. Alternatively, either a combination of very strict and detailed regulation 
imposes prohibitive compliance costs or fears about future regulatory change deter 
investment.

The application of these Golden Rules is not sufficient in itself to determine successful 
resource development in countries with unconventional gas potential. Based on experience 
in the United States, other key factors include: 

	 Access to resources: these considerations include access to geological data on a 
reasonable and transparent basis, the size of the area covered by a licence and the 
duration of the licence, and freedom for companies to engage in upstream activities 
on a competitive basis.

	 The fiscal and regulatory framework: some countries have high potential in terms of 
resources but unattractive overall conditions for investment, such as unpredictable 
fiscal regimes or weak institutions.

	 Availability of expertise and technology: not least because unconventional gas 
production requires a large number of wells, the industry needs a skilled and 
experienced workforce and a well-developed service sector with access to the 
necessary equipment.

	 Existing infrastructure: although there are possibilities for small-scale gas gathering 
arrangements and direct conversion to power (or liquefied natural gas [LNG]), the 
density of the gas transport infrastructure in areas targeted for unconventional 
development is an important consideration, as is the existence of guaranteed access 
to this infrastructure.

	 Markets and pricing: gas is relatively expensive to transport (compared with its well-
head production costs and also with the cost of transporting oil) so companies will 
be attracted to resources with reliable, proximate markets that offer the necessary 
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incentives to develop the gas. The absence of market pricing in the host market can 
eliminate the commercial case for unconventional gas development.

	 Water availability: water is essential to the production process for shale gas and tight 
gas (see Chapter 1), and competition with established users in water-stressed areas 
may constrain unconventional developments.2

Experience in the United States points to additional factors such as the number of 
entrepreneurial and independent companies willing to take the risk of venturing into a 
new industrial sector, which is coupled with their ability to mitigate market risk via well-
developed financial markets. In the absence of widespread examples outside the United 
States, it is impossible for the moment to say which of the ingredients listed above are 
essential for large-scale unconventional gas development, which of them are merely 
desirable, and which might play only a limited role. What can be said, though, is that the 
mix of conditions and constraints varies by country: in some, environmental and social 
issues will be decisive; in others, the quality of the resource, the nature of the upstream 
supply chain, market conditions and prices, or the overall legal system and investment 
security, may be more significant.

Our general assumption in the Golden Rules Case is that all of the potential obstacles 
listed are either overcome or do not prove a serious constraint on unconventional gas 
development. A major motivation for supportive policies is assumed to be the desire of 
countries to secure the economic benefits of a valuable indigenous resource and, in many 
cases, also to improve energy security by reducing dependence on imported gas. The 
essence of the Golden Rules is that they bolster public confidence in the determination of 
public authorities and operators alike to overcome the social and environmental hazards, 
thereby creating a political environment that allows for the enactment of other policies 
encouraging investment in this sector. In the Low Unconventional Case, weak or absent 
political support deters the implementation of supportive measures for unconventional gas 
development, such as attractive fiscal and investment terms. 

In the projections for the different cases, which are presented later in this chapter, the 
results of adopting the Golden Rules, in the Golden Rules Case, and the results of failing 
to do so, in the Low Unconventional Case, are compared against the outcome in a baseline 
case. This baseline case uses the central scenario of the WEO-2011 (the New Policies 
Scenario) as its starting point, but incorporates more recent data, where these have 
become available, and certain new assumptions, such as the rate of GDP growth, which 
are described more fully later in the chapter. The baseline case sees natural gas prices 
converge towards the levels assumed in the WEO-2011 New Policies Scenario, whereby 
prices in the United States reach $8.2 per million British thermal units (MBtu) in 2035 (in 
year-2010 dollars) and average import prices into Europe and Japan reach $12.2/MBtu and 
$14.2/MBtu respectively. However, the baseline case excludes the application in full of the 

2.  The WEO-2012 will include a dedicated chapter on the links between energy and water use.
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Golden Rules and the other supportive policies that generate faster growth in natural gas 
production in the Golden Rules Case.

Unconventional gas resources

Our projections depend, first, on the size of the available resource. Drawing on data from 
a variety of sources, we estimate that remaining technically recoverable resources of shale 
gas amount to 208 trillion cubic metres (tcm), tight gas 76 tcm and coalbed methane 47 tcm 
(Table 2.1). Russia and countries in the Middle East are the largest holders of conventional 
gas resources (and Russia has by a distance the largest overall gas resources). However, 
a large part of the world’s remaining recoverable unconventional gas lies in countries or 
regions that are currently net gas importers and face increasing import dependency, such 
as China, and the United States, which before the recent boom in unconventional gas in 
North America was looking at the prospect of rising LNG imports (Figure  2.1). Different 
assumptions about the terms of access to the unconventional resource base in China and in 
the United States, and in other unconventional resource-rich countries around the world, 
are a main determinant of the variations between levels of production in the Golden Rules 
Case and the Low Unconventional Case.

Table 2.1 ⊳ � Remaining technically recoverable natural gas resources by 
type and region, end-2011 (tcm)

Total Unconventional

Conventional Unconventional Tight Gas Shale Gas Coalbed 
methane

E. Europe/Eurasia 131 43 10 12 20

Middle East 125 12 8 4 -

Asia/Pacific 35 93 20 57 16

OECD Americas 45 77 12 56 9

Africa 37 37 7 30 0

Latin America 23 48 15 33 -

OECD Europe 24 21 3 16 2

World 421 331 76 208 47

Source: IEA analysis.

Note: The resource estimate for coalbed methane in Eastern Europe and Eurasia replaces a figure given in 
the WEO-2011 and in the Golden Age of Gas publications (IEA, 2011a and 2011b), which included a “gas-in-
place” estimate for Russia instead of the estimate for technically recoverable resources.

Although they are undoubtedly large, unconventional gas resources are still relatively 
poorly known, both in terms of the extent of the resource in place and judgements about 
how much might be economically extracted. The industry is still in the learning phase when 
it comes to many resources outside North America: each unconventional resource play 
brings with it distinctive challenges and it has not yet been demonstrated that technologies 
well adapted to existing production areas can unlock the resource potential in all areas. 
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Figure 2.1 ⊳  �Remaining recoverable gas resources in the top fifteen 
countries, end-2011
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In particular for shale gas, our analysis and projections in this report rely on estimates from 
the pioneering work of Rogner (Rogner, 1997) and the landmark study from Advanced 
Resources International (ARI), published by the US Energy Information Administration 
(EIA) in 2011 (US DOE/EIA, 2011a); these are distinctive in applying consistent standards 
of evaluation to a large number of countries. On the one hand, resources could easily 
be even larger than indicated in these studies, as they do not examine all possible shale 
gas reservoirs around the world. On the other hand, several publications have provided 
estimates significantly lower than the ARI study: the United States Geological Survey 
(USGS), whose resource assessments are generally among the most authoritative, has 
recently published several regional studies indicating lower resources. This is the case, for 
example, for the Krishna-Godavari shale gas basin in India (USGS, 2012) for which they 
report a mean estimate of 116 bcm (4.1 trillion cubic feet [tcf]), compared with the ARI 
estimate of 765 bcm (27 tcf); this much more conservative estimate can be traced back to 
a smaller estimate for the productive area of the shale and to a smaller mean recovery per 
well (assuming the same drainage area).3 Studies by the Polish Geological Institute with 
support from USGS also give a much lower estimate (a range of 346 bcm to 768 bcm versus 
the 5.3 tcm given in the ARI study4) for shale gas resources in Poland (PGI, 2012). China has 

3.  The methodologies used for the two studies are different. ARI first estimates gas-in-place and then applies a 
recovery factor. USGS estimates directly the recoverable resources based on recovery per well and well drainage 
areas derived by analogy with reservoirs in the United States for which data is available. The methodology 
used to determine well drainage areas has not been published yet by USGS, making it difficult to compare with 
industry-accepted values.
4.  The different resource estimates can have a substantial impact on the outcome of our projections: see the 
references to Poland in Chapter 3.
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also released new estimates of shale gas resources that are about 20% lower than those 
given by ARI (MLR, 2012). The much talked-about USGS study of the Marcellus shale in 
the northeast United States estimated the undiscovered shale resources there at 2.4 tcm 
(84  tcf), much lower than the 11.6  tcm (410  tcf) recoverable resources reported by the 
US EIA in 2011 (USGS, 2011).5 US EIA subsequently reduced their estimate for recoverable 
gas in the Marcellus to 4 tcm (141 tcf) (US DOE/EIA, 2012). 

Estimates of coalbed methane resources are drawn from the German Federal Institute 
for Geosciences and Natural Resources (BGR, 2011) and US EIA. Tight gas resources are 
generally poorly defined and known: the exceptions are the United States, Canada and 
Australia, for which national resource data are used. Tight gas resource estimates for other 
countries are derived from Rogner.

In the Golden Rules Case, the entire resource base for unconventional gas is assumed to 
be accessible for development, including in countries and regions where moratoria or 
other restrictions are currently in place. In the Low Unconventional Case, however, the 
constraints imposed by the absence of supportive policies (in particular the Golden Rules 
themselves) and the uncertainties over the size and quality of the resource base were 
modelled by assuming that only a small part of the ultimately recoverable unconventional 
resource base is accessible for development. The key assumptions by country or region for 
the Low Unconventional Case are: 

	 United States: only 65% of tight gas, 45% of coalbed methane and 40% of shale gas 
resources are accessible. For shale gas, this could, as an example, correspond to 
excluding all new developments in the northeast United States6, in California and in 
the Rocky Mountains, while the more traditional oil and gas producing regions, such as 
Texas, Oklahoma or the Gulf Coast, would continue to develop their shale resources. 
Alternatively, restrictions could apply to some parts of the prospective acreage in all 
regions, such as the more densely populated parts, or those with serious competition 
in uses for water. For coalbed methane, this could essentially restrict developments 
to regions that are already producing. Tight gas has been produced for many years in 
numerous traditional hydrocarbon-producing regions, so tight gas production is not 
assumed to be restricted as much as the other categories.

5.  Strictly speaking, the USGS and US EIA numbers cannot be compared as USGS reports undiscovered gas 
resources while US EIA reports total recoverable resources, which differ from undiscovered by proven reserves 
and discovered-but-undeveloped resources. However, neither organisation has provided a breakdown of these 
three categories. Overall, unconventional gas challenges the usual definitions, as there is no real discovery 
process (the locations of most gas bearing shales in the world are already known); it is more an appraisal process: 
the process of establishing that a given shale, and/or what part of the shale, can produce economically. As a 
result the difference between undiscovered and discovered-but-not-developed is blurred and it is important to 
clarify the assumption used in various resources estimates.
6.  The World Energy Model (WEM) currently uses the US EIA 2011 resources numbers (US DOE/EIA, 2011b), 
before their downward revision for the Marcellus shale, pending publication of more details for the background 
of this revision. So the northeast United States, and the Marcellus shale in particular, represents about half of 
the estimated resources. Note that WEM treats the United States as a single region, so there is no projection of 
production by basin.
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	 China: only 40% of the coalbed methane and 20% of the shale gas resources are 
assumed to be accessible. Public acceptance is likely to be a lesser influence in China 
than in other countries (although we are looking forward 25 years and, if the changes 
that have occurred in the last 25  years in China are any guide, public sensitivity to 
environmental issues could become significantly greater during the projection period), 
but other factors could restrict the ambitious official plans for unconventional gas 
production (Box 2.4).

	 India: only 30% of the coalbed methane and 20% of the shale gas resources are 
assumed to be accessible. The large projected gas import requirements of India make 
it unlikely that public opposition would force a complete ban. On the other hand, on 
current estimates, unconventional gas resources in India are not sufficient to make 
more than a dent in these imports and our assumption is consistent with a political 
decision to restrict development of all but the less contentious resource areas.

	 Australia: only 40% of coalbed methane and none of the shale gas resources are 
assumed to be accessible. Development of both types of resources has already become 
controversial in Australia. About 5 bcm of coalbed methane was produced in Australia 
in 2010 and there are three large-scale projects underway to build LNG plants fed by 
coalbed methane. The restriction to 40% of available resources essentially amounts to 
no new projects being authorised beyond those announced.

	 Rest of the world: no new unconventional gas resources are assumed to be developed 
outside Canada (for which we use percentages about half of those in the United States, 
to reflect similar dynamics, but the smaller part of the resources so far developed) 
and Russia (where, in any event, unconventional resources are not expected to play a 
significant role).7

Development and production costs

The costs of developing and producing unconventional gas are made up of several 
elements: capital costs, operational costs, transportation costs, and taxes and royalties. 
Capital costs, often called finding and development costs, are usually dominated by the 
costs of constructing wells. As discussed in Chapter 1 (under “Implications for Industry”), 
shale gas wells do cost more than conventional gas wells in the same conditions, because 
of the additional costs of multistage hydraulic fracturing; the same consideration applies 
to tight gas wells, for the same reason. Coalbed methane wells have so far been relatively 
cheap, compared with conventional gas wells, because production has been at shallow 
depths in regions with well-developed markets. Operational costs, also called lifting 
costs, are those variable costs that are directly linked to the production activity: they 
may differ according to local conditions (but not necessarily between conventional and 

7.  This assumption about the rest of the world (with the partial exception of Canada and Russia) has the virtue 
of simplicity, although it is a little extreme in some countries that are already producing coalbed methane 
without any controversy; however, the amounts involved are too small to have any impact on prices or energy 
security.
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unconventional gas produced under similar conditions). The cost of bringing gas to market 
is distance-dependent and is identical for conventional and unconventional gas.

The final element, taxes and royalties, varies greatly between jurisdictions; in addition 
to a profit tax component, it very often includes fixed or production-related taxes (paid 
to governments) and/or royalties (paid to the resource owner, which may or may not be 
governments). Countries or regions that have higher capital and operating costs, due to 
their geography or market conditions, often create a more attractive fiscal regime in order 
to attract investment. This can go as far as offering subsidies: China provides subsidies for 
coalbed methane and shale gas production.

On the basis of these costs, one can estimate a “break-even cost”, or “supply cost”, the 
market value required to provide an adequate real return on capital for a new project 
(normally taken to be 10% for a project categorised as risk-free and rising with incremental 
risk). This break-even cost does not apply to legacy production from largely depreciated 
installations. Lifting costs, transport costs, and taxes and royalties are usually directly 
expressed in US dollars per unit of gas produced. The significance of capital costs is very 
dependent on the amount of gas recovered per well. This also varies greatly: the best 
shale gas wells in the United States are reported to have Estimated Ultimate Recovery 
(EUR) of 150 to 300 million cubic metres (mcm) (5 to 10 billion cubic feet [bcf]); but many 
shale gas wells have EUR that is 10 or 100 times less. The average EUR varies from one 
shale to another, but also depends on the experience of the industry in a given shale: 
with time, the industry optimises the technologies used and extracts more gas from each 
well. Outside the United States, there is essentially no experience so far, but drilling longer 
horizontal wells should help improve EUR per well (in many jurisdictions in the United 
States, horizontal well length is limited by acreage unit size regulations).

It follows from the discussion of costs that the break-even costs for gas can vary greatly 
from one location to the next, or within a single country (Table  2.2). For example in 
the United States, break-even costs for dry gas wells probably range from $5/MBtu to  

$7/MBtu; gas containing liquids has a lower (gas) break-even cost, which can be as low as 
$3/MBtu, as the liquids add considerable value for a small increase in costs (associated 
gas from wells producing predominantly oil can have an even lower break-even cost). 
Since conventional gas resources are already fairly depleted onshore and most future 
conventional gas production will therefore come from more expensive offshore locations, 
the range of break-even costs for conventional and unconventional gas in the United States 
is fairly similar.

In Europe, the costs of production are expected to be about 50% higher, with a range of 
break-even costs between $5/MBtu and $10/MBtu. Conventional and unconventional gas 
are expected to be in the same range, as conventional resources are depleted and new 
projects are moving to the more expensive Norwegian Arctic. China has a cost structure 
similar to that of the United States, but shale reservoirs there tend to be deeper and more 
geologically complex; similarly, coalbed methane reservoirs in China tend to be in remote 
locations, so we estimate the break-even cost range to be intermediate between that of 
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the United States and that of Europe ‒ from $4/MBtu to $8/MBtu (although there are 
production subsidies in place that can bring this figure down). This estimate for China applies 
to both conventional and unconventional gas, as the easy conventional gas is depleting and 
production is moving to offshore or more remote regions. In countries that have large, 
relatively easy, remaining conventional gas, such as the Middle East, with break-even costs 
of less than $2/MBtu, the break-even cost range for unconventional gas is expected to be 
higher (similar to that for unconventional gas in the United States).

Table 2.2 ⊳ � Indicative natural gas well-head development and production 
costs in selected regions (in year-2010 dollars per MBtu)

Conventional Shale gas Coalbed methane

United States 3 - 7 3 - 7 3 - 7
Europe 5 - 9 5 - 10 5 - 9
China 4 - 8 4 - 8 3 - 8
Russia 0 - 2, 3 - 7* - 3 - 5
Qatar 0 - 2 - -

* The lower range for Russia represents production from the traditional producing regions of Western 
Siberia and the Volga-Urals; the higher range is for projects in new onshore regions such as Eastern Siberia, 
offshore and Arctic developments.

In the Golden Rules Case, the development and production cost assumptions are not 
increased because of the application of the Golden Rules; as discussed in Chapter 1, the 
application of the Golden Rules does have some cost impact, but not sufficient to push 
up the costs of production significantly (and, possibly, not at all). The same starting point 
is used for development and production costs in the Low Unconventional Case; costs in 
this case, though, are subject to the general assumption (built into the modelling) that 
production tends to become more costly as a given resource starts to become scarcer. 
Since access to unconventional gas resources is limited in this case, the rate of increase in 
the costs of production is higher than in the Golden Rules Case.

Natural gas prices

The price assumptions in the Golden Rules Case and in the Low Unconventional Case 
vary substantially, reflecting the different regional and global balances between supply 
and demand in each case (Table  2.3). The price assumptions in the Golden Rules Case 
reflect the favourable outlook for unconventional gas supply that results from successfully 
addressing the potential barriers to its development. Greater availability of gas supply has 
a strong moderating impact on gas prices. Conversely, lower production of unconventional 
gas in the Low Unconventional Case means that higher natural gas prices are required to 
bring the different regional markets into balance.
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Table 2.3 ⊳ � Natural gas price assumptions by case  
(in year-2010 dollars per MBtu)

Golden Rules 
Case

Low Unconventional  
Case

2010 2020 2035 2020 2035

United States 4.4 5.4 7.1 6.7 10.0

Europe 7.5 10.5 10.8 11.6 13.1

Japan 11.0 12.4 12.6 14.3 15.2

Note: Natural gas prices are expressed on a gross calorific value basis. Prices are for wholesale supplies 
exclusive of tax. The prices for Europe and Japan are weighted average import prices. The United States 
price reflects the wholesale price prevailing on the domestic market 

North America is the region where the unconventional gas industry has grown most rapidly 
and, unsurprisingly, is also the region where the impact on markets and prices has thus far 
been greatest. Historically low prices are being obtained for natural gas, relative to other 
energy forms such as oil. More surprisingly, given the relative isolation of North American 
markets from other major gas-using regions, this development has already had profound 
international impacts. These have arisen because North America has become almost self-
sufficient in gas, whereas many LNG investments in the decade 2000 to 2010 were made in 
the expectation that the North American region would be a substantial net LNG importer. 
Import infrastructure in excess of 100  bcm was built in the United States alone in this 
period, with matching LNG supply investments in major producers, such as Qatar. However, 
in 2011, net LNG imports to North America were less than 20 bcm, out of a total market 
exceeding 850  bcm: 8  bcm into the United States and 9  bcm into Mexico and Canada. 
Hence, major quantities of LNG supply became available for other global markets, including 
Asia and Europe.

Natural gas prices in the United States are assumed to rise from today’s historic lows in 
both cases, but they increase much more quickly in the Low Unconventional Case. The 
contrasting future roles of North America in global gas trade in the two cases help to 
explain these different price trajectories. In the Golden Rules Case, the region becomes 
a significant net LNG exporter, on the back of continued increases in unconventional gas 
output in the United States and Canada and an expansion in LNG export capacity. Natural 
gas prices in the United States are assumed to reach a plateau of between $5.5/MBtu 
and $6.5/MBtu during the 2020s (the levels which we assume are sufficient to support 
substantial volumes of dry gas production) before rising to $7.1/MBtu in 2035. Exports 
at the levels anticipated in this case are relatively small, compared with the overall size 
of the United States’ gas market, and do not play a decisive role in domestic price-setting 
(although they are significant for other markets). By contrast, in the Low Unconventional 
Case, North America remains a net importer of gas, with imports growing rapidly after 
2025. With the region needing to draw its incremental gas supply from international 
markets, the natural gas price in the United States is pushed up much more quickly than in 
the Golden Rules Case, reaching $10/MBtu in 2035.
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The weighted average import price assumptions for Europe and for Japan are likewise lower 
in the Golden Rules Case than in the Low Unconventional Case. Within this basic trend, 
differences between the two markets reflect the different balances between gas supply 
and demand in each case, as well as the various pricing mechanisms present and how these 
mechanisms are assumed to evolve. At present, gas prices are set freely in several markets, 
including North America, the United Kingdom and, to a somewhat lesser extent, Australia, 
an approach known as gas-to-gas competition. However, much of the gas traded across 
borders in the Asia-Pacific region is sold under long-term contracts, with linkages to the 
price of oil or refined products. Prices in continental Europe are predominantly oil-linked, 
though in recent years a mixture of the two systems (and many variations in between) has 
emerged, with oil-indexed prices co-existing – often uneasily – with prices set by gas-to-gas 
competition. We assume that pressure to move away from prices set by oil-indexation and 
towards those established through gas-to-gas competition is significantly greater in the 
Golden Rules Case than in the Low Unconventional Case.

In the Golden Rules Case, the United States is expected to play an important role in the 
evolution of international natural gas pricing mechanisms. Initial contracts for United States 
LNG exports have been written on the basis of the price at the main domestic natural gas 
trading hub (Henry Hub), plus liquefaction and transport costs, plus profit, rather than the 
traditional oil-price indexation prevailing in many of the markets where this gas will be sold. 
In the Golden Rules Case, this is assumed to put pressure on oil-indexed price formulas for 
natural gas, moderating gas price increases and provoking a greater degree of convergence 
in international prices towards those set by gas-to-gas competition. We do not, though, 
assume that this process of creating a single, liquid or competitive international gas market 
is completed in the Golden Rules Case (a situation in which natural gas price differentials 
between regions would reflect only the costs of transportation between them). An 
important moderating factor in importing regions, especially in Asia, is that most existing 
natural gas import contracts will continue to remain in force for many years and are based 
on oil indexation, so average prices cannot be expected to fall dramatically. In addition, 
some major new export projects (including, for example, from Canadian plants) are 
greenfield LNG operations, likely to push for traditional pricing arrangements. Hence, while 
the rise of North American LNG exports in the Golden Rules Case is a major development in 
global gas markets, we anticipate that wholesale prices in the United States remain at least 
$5 to $6 below Japanese import prices, with European import prices between these two.

Other assumptions

Both cases include updated assumptions on GDP, compared with the WEO-2011, with 
average annual GDP growth of 3.5% for the period 2012 to 2035, compared with 3.4% 
in WEO-2011 for the same period (this allows the global economy in 2035 to reach the 
same overall size as assumed in WEO-2011). World population is assumed to expand from 
an estimated 7.0 billion in 2012 to 8.6  billion in 2035, as in WEO-2011. The projections 
for natural gas incorporate new demand and supply data by country and region for 2011, 
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where these are available. Prices for oil, coal and carbon-dioxide (CO2) are likewise updated 
to include new data for 2011, but they still converge towards the levels assumed in the 
central scenario of the WEO-2011, the New Policies Scenario. This means that the average 
IEA crude oil import price – a proxy for international oil prices – reaches $120/barrel in 
2035 in year-2010 dollars (a nominal oil price of $212/barrel). The IEA steam coal import 
price increases to $112/tonne in 2035.

In the Golden Rules Case, to complement the impact on gas demand arising from lower 
prices that improve the competitive position of gas compared with other fuels, we also 
assume intervention by governments to foster demand growth in countries experiencing 
a large rise in indigenous gas production. In the United States, for example, supportive 
policies are assumed to facilitate increased use of natural gas in the road-transport sector, 
in particular for the commercial fleet. These additional demand-side policies are not 
included in the baseline case nor in the Low Unconventional Case, because the motivation 
for their adoption, i.e. higher indigenous production and lower prices, is absent.

Another notable change in policy assumptions, compared with the WEO-2011, occurs in 
Japan, where, pending the outcome of the ongoing review of Japan’s Strategic Energy Plan, 
the future contribution of the nuclear sector to power generation is revised downwards in 
all cases.

Otherwise, all assumptions remain constant from the New Policies Scenario of the  
WEO-2011 (which takes into account policies and declared future intentions as of mid-2011), 
including the assumption that new measures are introduced to implement announced 
policy commitments, but only in a relatively cautious manner. These commitments include 
national pledges to reduce greenhouse-gas emissions and, in certain countries, plans to 
phase out fossil-fuel subsidies.

The Golden Rules Case
Demand

Global primary energy demand in the Golden Rules Case rises from around 12 700 million 
tonnes of oil equivalent (Mtoe) in 2010 to 17 150 Mtoe in 2035, an increase of 35%. Natural 
gas demand increases in the period to 2020 by more than 700 bcm (compared with 2010 
levels), the equivalent of adding another United States to the global demand balance, 
and by a further 1.1  tcm in the period from 2020 to 2035, reaching a total of 5.1  tcm 
(4  230  Mtoe) in 2035. This is around 300  bcm, or 6%, higher than in the baseline case 
in 2035, with average annual growth over the projection period of 1.8%, compared with 
1.5%. In the Golden Rules Case, gas accounts for about one-third of the overall increase 
in primary energy demand, a larger contribution than that made by any other fuel and 
equivalent to the growth in demand for coal, oil and nuclear combined (Figure  2.2). By 
2035, natural gas has overtaken coal to become the second most important fuel in the 
energy mix.
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Figure 2.2 ⊳ � World primary energy demand by fuel in the Golden Rules Case
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Different rates of gas demand growth, albeit less pronounced than in the exceptional year 
of 20118, are expected to characterise gas markets in the longer term (Table 2.4). In the 
Golden Rules Case, 80% of the growth in gas demand comes from outside the OECD; China, 
India and the countries of the Middle East require an additional 900 bcm of gas in 2035, 
compared with consumption in 2010. In China and India and other emerging economies, 
natural gas at present often has a relatively low share of total energy consumption and 
its use is being specifically promoted as a way to diversify the fuel mix and reap some 
environmental benefits, often displacing coal as the preferred fuel to supply fast-growing 
urban areas. While growth in gas demand is healthy even in many of the more mature 
OECD gas markets – a development that is encouraged by the lower prices for natural gas 
in the Golden Rules Case – the growth in China alone is more than the anticipated growth 
in all of the OECD countries put together. Gas demand in China grows over the period 
2010 to 2035 by 480 bcm, reaching a total of around 590 bcm in 2035 (larger than current 
gas demand in the European Union), meaning that developments on both the supply and 
demand sides in China will continue to have a substantial impact not just in the Asia-Pacific 
region but – via the wider effects on trade and prices – in markets around the world.

Gas used for generating power and heat is the single largest component of gas demand, 
accounting for around 40% of total gas consumed. Alongside the lower perceived risk of 
building gas-fired plants and the lower environmental impact, compared with other fossil 
fuels, the natural gas prices assumed in the Golden Rules Case improve the competitive 

8.  Preliminary data suggest that gas consumption in Europe declined by around 11% compared with the 
previous year, pulled down by warm weather, a sluggish European economy and a weak competitive position in 
the power sector compared with coal. This was in marked contrast to developments in the Asia-Pacific region: 
Korea and Japan showed a dramatic upsurge in demand for LNG, the latter linked to reduced output of nuclear 
energy following Fukushima, and Chinese gas demand continued its meteoric rise, becoming a larger gas 
consumer than any OECD country except the United States. The United States also saw growth in consumption, 
of around 2.5%, spurred by low prices that neared $2/MBtu in late 2011.
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position of natural gas and push up gas demand for power generation to more than 2 tcm 
by 2035. The role of gas in power generation increases from 22% to 24%, with coal and 
oil (the latter a marginal fuel in power generation) ceding share in response. Gas use in 
buildings and in industry also increases substantially, reaching 1  060  bcm and 970  bcm 
respectively by the end of the projection period.

Table 2.4 ⊳ � Natural gas demand by region in the Golden Rules Case (bcm)

2010 2020 2035 2010-2035*

OECD 1 601 1 756 1 982 0.9%

Americas  841  921 1 051 0.9%

United States  680  717  787 0.6%

Europe  579  626  692 0.7%

Asia Oceania  180  209  239 1.1%

Japan  104  130  137 1.1%

Non-OECD 1 670 2 225 3 130 2.5%

E. Europe/Eurasia  662  736  872 1.1%

Russia  448  486  560 0.9%

Asia  398  705 1 199 4.5%

China  110  323  593 7.0%

India  63  100  201 4.7%

Middle East  365  453  641 2.3%

Africa  101  130  166 2.0%

Latin America  144  200  252 2.3%

World 3 271 3 982 5 112 1.8%

European Union  547  592  644 0.7%

* Compound average annual growth rate

Although volumes are small compared with the other end-use sectors, the Golden Rules 
Case sees strong growth in gas use in the transport sector. This is encouraged both by 
lower prices, compared with oil, and also by government policies, for example support for 
developing the necessary refuelling infrastructure. Use of natural gas for road transportation 
increases by more than six times in the period to 2035, reaching close to 150 bcm in 2035. 
For the moment, transport is the only major end-use sector where gas is not widely used: 
although there are viable natural gas vehicle technologies, there are only a few countries 
where these are deployed at scale. More than 70% of all natural gas vehicles and half of all 
fuelling stations are found in just five countries: Pakistan, Iran, Argentina, Brazil and India. 
In our projections, India and the United States lead the growth in natural gas consumption 
for transport, primarily in commercial fleets, buses and municipal vehicles that can use 
central depots for refuelling.
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Implications for other fuels

The implications of applying the Golden Rules to unconventional natural gas extend beyond 
gas to other competing fuels. As the share of gas rises from 21% of global primary energy 
consumption in 2010 to 25% by 2035 (compared with 23% in the baseline case), growth 
in demand for oil and coal is constrained and, marginally, also demand for nuclear and 
renewable energy (Table 2.5). 

Table 2.5 ⊳ � World primary energy demand by fuel in the Golden Rules Case 

Demand (Mtoe) Share

2010 2020 2035 2010 2020 2035

Coal 3 519 4 109 4 141 28% 28% 24%

Oil 4 094 4 381 4 548 32% 29% 27%

Gas 2 700 3 291 4 228 21% 22% 25%

Nuclear  719  927 1 181 6% 6% 7%

Hydro  295  376  472 2% 3% 3%

Biomass 1 262 1 496 1 896 10% 10% 11%

Other renewables  110  287  676 1% 2% 4%

Oil continues to be the dominant fuel in the primary energy mix, with demand increasing 
from about 4 100 Mtoe in 2010 to 4 550 Mtoe in 2035, but its share in the primary energy 
mix drops from 32% in 2010 to 27% in 2035. Compared with the baseline case, lower gas 
prices promote substitution for oil in the transport and power sectors, resulting in global oil 
demand being reduced by some 2 million barrels per day (mb/d) in 2035.

Primary coal consumption in the Golden Rules Case rises until around 2025 and then levels 
off. Its share in the energy mix declines from 28% in 2010 to 24% in 2035. In that year, 
coal demand is around 3% lower (115 Mtoe) than in the baseline case, an amount greater 
than total current European imports of hard coal. Three-quarters of coal demand growth 
stems from the power sector. Lower gas prices favour gas over coal for new builds in most 
countries (Figure 2.3). However, in some countries, such as China, coal remains cheaper 
than gas, in the absence of prices that internalise environmental externalities, such as 
local pollution or CO2 emissions. In this situation, Chinese government policies aimed at 
increasing gas use are crucial to its development. Globally, excluding China, 3.5 units of gas-
fired electricity generation are added for each new unit of coal-fired electricity generation. 

Over the Outlook period, nuclear output grows, but it is marginally below our baseline 
case in 2035. Gas prices have a direct influence on new nuclear construction in liberalised 
markets, mostly in OECD countries, where we expect nuclear output to grow 12% less 
than our baseline. However, most of the global growth in nuclear will occur in non-OECD 
countries, where specific national plans to expand nuclear capacity are less likely to be 
affected by changing market conditions. 
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Figure 2.3 ⊳  �Electricity generating costs for new coal- and natural gas-fired 
power plants in selected regions in the Golden Rules Case, 2020
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The global outlook for renewable sources of energy is not affected substantially by the 
increased use of gas in the Golden Rules Case, with volumes and shares of output remaining 
very close to those in the baseline case. Due to lower gas (and consequently electricity) 
prices, the growth of electricity output from non-hydro renewables is reduced globally by 
5% compared with our baseline. This global average figure hides some larger differences 
in specific countries, where the impact is stronger, due to the price levels and to the type 
of support policies in place. This is, for example, the case in the United States, where the 
growth of electricity from non-hydro renewables is some 10% lower with respect to the 
baseline. 

There are factors working both against, and in favour of, renewables in a world of more 
abundant gas supplies. Depending on the type of policies in place, an abundance of natural 
gas might diminish the resolve of governments to support low and zero-carbon sources of 
energy: lower gas prices (and therefore lower electricity prices) can postpone the moment 
at which renewable sources of energy become competitive without subsidies and, all else 
being equal, therefore make renewables more costly in terms of the required levels of 
support. However, an expansion of gas in the global energy mix can also facilitate greater 
use of renewable energy, if policies are in place to support its deployment, given that 
gas-fired power generation can provide effective back-up to variable output from certain 
renewable sources. Moreover, lower electricity prices can encourage customer acceptance 
of a higher component of electricity from renewable sources. Ultimately, the way that 
renewables retain their appeal, in a gas-abundant world, will depend on the resolve of 
governments. We assume that existing policies and support mechanisms remain in place as 
part of the efforts by governments to address the threat of a changing climate.
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Supply

In the Golden Rules Case, total gas production grows by around 55%, from 3.3  tcm in 
2010 to 5.1 tcm in 2035. Over the same period, unconventional gas production increases 
from around 470 bcm in 2010 to more than 1.6 tcm in 2035. Although unconventional gas 
output grows relatively slowly in the early part of the projection period, reflecting the time 
required for new producing countries to develop commercial production, for the projection 
period as a whole, unconventional gas represents nearly two-thirds of incremental gas 
supply (Table 2.6). 

Table 2.6 ⊳ � Natural gas production by region in the Golden Rules Case (bcm)

2010 2020 2035
2010-
2035**Total Share of 

unconv* Total Share of 
unconv* Total Share of 

unconv*

OECD 1 183 36% 1 347 49% 1 546 60% 1.1%

Americas  821 51%  954 62% 1 089 68% 1.1%

Canada  160 39%  174 57%  177 67% 0.4%

Mexico  50 3%  52 12%  87 43% 2.2%

United States  609 59%  726 67%  821 71% 1.2%

Europe  304 0%  272 4%  285 27% -0.3%

Poland  6 11%  9 37%  34 90% 7.1%

Asia Oceania  58 9%  121 49%  172 64% 4.5%

Australia  49 11%  115 51%  170 65% 5.1%

Non-OECD 2 094 2% 2 635 7% 3 567 20% 2.2%

E. Europe/Eurasia  826 3%  922 3% 1 123 6% 1.2%

Russia  637 3%  718 4%  784 6% 0.8%

Asia  431 3%  643 20%  984 56% 3.4%

China  97 12%  246 45%  473 83% 6.6%

India  51 2%  75 21%  111 80% 3.2%

Indonesia  88 -  106 2%  153 37% 2.2%

Middle East  474 0%  581 1%  776 2% 2.0%

Africa  202 1%  264 1%  397 5% 2.7%

Algeria  79 -  101 1%  135 8% 2.2%

Latin America  159 2%  226 4%  286 22% 2.4%

Argentina  42 9%  53 9%  72 48% 2.1%

World 3 276 14% 3 982 21% 5 112 32% 1.8%

European Union  201 1%  160 7%  165 47% -0.8%

* Share of unconventional production in total natural gas production. 

** Compound average annual growth rate.
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The share of unconventional gas in total gas production increases in the Golden Rules Case 
from 14% in 2010 to 32% in 2035  (Figure 2.4). Of the different sources of unconventional 
supply, tight gas, at 245  bcm, accounted for just over half of global unconventional 
production in 2010. However, it is rapidly overtaken in our projections by production of 
shale gas, which rises from around 145 bcm in 2010 (31% of total unconventional output) 
to 975  bcm in 2035 (almost 60% of the total). Production of coalbed methane likewise 
grows rapidly, from 80 bcm in 2010 to nearly 410 bcm in 2035.

Figure 2.4 ⊳ � Unconventional natural gas production by type in the Golden 
Rules Case
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The continued expansion of unconventional gas production in North America means that 
the United States moves ahead of Russia as the largest global gas producer, with about 
820 bcm of total gas production in 2035, compared with 785 bcm in Russia. North American 
unconventional output, with substantial contributions also from Canada and Mexico, 
rises to nearly 740 bcm in 2035 in the Golden Rules Case. But increased unconventional 
production also occurs widely around the world: whereas unconventional gas production in 
2010 is dominated by North America, the share of North America in global unconventional 
production falls to around 70% in 2020 and only 45% in 2035.9 

China becomes a major gas producer in the Golden Rules Case and the second-largest 
global producer of unconventional gas, after the United States (Figure 2.5). Progress with 
developing unconventional gas resources is bolstered by the twin policy commitments 
of increasing the share of natural gas in the Chinese energy mix and developing, where 
possible, the domestic resource base so as to mitigate increased reliance upon energy 
imports. The large resource base for shale gas and coalbed methane allows very rapid 
growth in unconventional production from around 2017 onwards and total unconventional 

9.  More detailed discussion of the regulatory issues and production outlooks for North America, China, Europe 
and Australia are included in Chapter 3 of this report.
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production reaches just over 110 bcm in 2020 and 390 bcm in 2035, 83% of total Chinese 
gas production. 

Figure 2.5 ⊳ � Ten largest unconventional gas producers in the Golden Rules 
Case, 2035

 

 

 
0 100 200 300 400 500 600

Poland 
Argen�na 

Mexico
Russia

Indonesia 
India 

Australia
Canada 

China
United States

bcm

0% 20% 40% 60% 80% 100%

Shale

Coalbed methane 

Tight

Share of unconven�onal 
in total produc�on  
(top axis) 

Similar policy objectives are assumed to drive an expansion in unconventional gas 
production elsewhere in Asia, notably in India where unconventional gas supply rises to 
nearly 90  bcm in 2035 (80% of total gas output). The currently known unconventional 
gas resource base in India can meet only a part of India’s incremental needs, given the 
prospect of strong growth in gas demand, and production growth starts to tail off towards 
the end of the projection period. In Indonesia, by contrast, resources of both conventional 
and unconventional gas are very large; some recent conventional discoveries are offshore 
and relatively expensive to develop, so the onshore unconventional plays, including 
rich potential for coalbed methane, are attractive by comparison. Unconventional gas 
production in Indonesia rises to around 55  bcm in 2035 (almost 40% of total output). 
Australia is another country that has the opportunity to develop both conventional and 
unconventional resources with a mix of coalbed methane, tight and shale gas. In the 
Golden Rules Case, unconventional gas makes up about 65% of Australia’s 170 bcm of total 
gas output by 2035.

The expansion of unconventional gas production in China and the United States (and, 
to a lesser extent, also in Europe) creates strategic challenges for existing gas exporters. 
This is evident in the projections for Russia, which remains by far the largest producer of 
conventional gas.10 Developments in the Golden Rules Case call into question the speed at 
which Russia will need to develop relatively expensive new fields in the Yamal peninsula, in 
the Arctic offshore and in Eastern Siberia. In our projections, Russia’s total gas production 
rises to about 785 bcm in 2035, more than 20% above 2010, but below the levels foreseen in 

10.  A part of Russia’s production is classified as tight gas although this is very similar to conventional production 
in practice; hydraulic fracturing to enhance flow rates is rarely used in gas wells. Russia is, though, projected to 
expand its output of coalbed methane by 2035.
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Russian policy or company outlooks and in our baseline. In the Middle East, an increasingly 
important challenge for gas producers – with the exception of an export-oriented producer 
like Qatar – is to meet increasing demand for gas on domestic markets. In our Golden Rules 
Case projections, this imperative to meet domestic needs leads to small amounts of shale 
gas being produced, mainly in Saudi Arabia and Oman, but conventional gas continues to 
predominate. In North Africa, though, unconventional gas plays a slightly more significant 
role, with Algeria, Tunisia and Morocco starting to produce shale gas in the early 2020s. 
By the end of the projection period, unconventional gas production reaches around 8% 
of total output in Algeria; with conventional resources becoming scarcer by this time, 
unconventional gas helps to maintain consistently high levels of production and export. 
Overall gas production in Africa is bolstered by expanded conventional output from a 
traditional producer, Nigeria, but also by output from new conventional producers, such 
as Mozambique and Angola.

Latin America has large potential for unconventional gas development, with Argentina 
(primarily shale gas) having the largest resource base, followed by Venezuela (tight gas) 
and then Brazil (shale gas). Attention in Argentina is focused on the Neuquén Basin in 
Patagonia, which helps Argentinean unconventional production reach 35  bcm by 2035 
in the Golden Rules Case, almost half of the total gas output. Both Venezuela and Brazil 
have ample conventional resources, which means that there is less need to develop their 
unconventional potential during the projection period; however, some unconventional 
gas is produced by 2035 in Bolivia (5 bcm), Peru (5 bcm), Paraguay (3 bcm) and Uruguay 
(3 bcm). 

Implications for other fuels

In the Golden Rules Case, the conditions supportive of unconventional gas production also 
support increased output of natural gas liquids (NGLs), extracted from liquids-rich shale 
gas, as well as light tight oil.11 This oil is analogous in many ways to shale gas, both in terms 
of its origins – it is oil that has not migrated, or at least not migrated far, from the (shale) 
source rock – and in terms of the production techniques required to exploit it. Light tight 
oil is being produced from many of the same basins as unconventional gas in the United 
States, and, in a price environment combining high oil prices and very low prices for natural 
gas, there is a strong economic incentive to target plays with higher liquids content. In 
the Golden Rules Case, we project a strong increase in production of light tight oil in the 
United States, with the potential for production to spread also to other countries rich in 
this resource (Box 2.2).

11.  Almost all shale gas plays produce some liquids and light tight oil production likewise comes with some 
associated gas. The distinction between liquids-rich unconventional gas plays and gas-rich light tight oil 
reservoirs is not clear-cut; it normally depends on the relative energy content of the gas versus the liquids 
produced, but this can vary over time for a single well.
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Box 2.2 ⊳ � The liquid side of the story – light tight oil

The spectacular rise in oil production from North Dakota and Texas in the United 
States clearly illustrates the growth potential for light tight oil. The Bakken formation 
under North Dakota has been known about since the 1950s, but production from this 
formation remained under 100 thousand barrels per day (kb/d) until only a few years 
ago, since when it has surged to over 500  kb/d and looks set to continue growing. 
The Eagle Ford shale in south Texas, adjacent to the Mexican border, also shows 
considerable promise, with production expected to grow from almost nothing three 
years ago to around 400  kb/d by the end of 2012. Combined production from the 
Bakken, the Eagle Ford and other emerging light tight oil plays in the United States is 
expected to reach 2 mb/d by 2020 in the Golden Rules Case. 

United States’ NGL production from shales such as the Barnett, Eagle Ford and 
Marcellus is also increasing rapidly and up to 1 mb/d of new capacity is expected to 
be added by 2020. The growth in NGL production is creating new opportunities for 
the petrochemical industry, but action will be required to remove pipeline bottlenecks 
and provide additional fractionation and storage facilities if the benefits are to be fully 
realised. The growth in global production of NGLs from shale formations and light tight 
oil in the period to 2020, predominantly in North America, makes up almost half the 
incremental growth in oil supply over this period.

Production outside North America of NGLs from shale and of light tight oil is unlikely to 
make a large contribution to global liquids production before 2020 as much evaluation 
work still needs to be done. However, the Neuquén basin in Argentina shows promise, 
YPF announcing potential resources of 7 billion barrels (YPF, 2012), while the extension 
of the Eagle Ford shale into Mexico is also a focus of attention. Our projections for 
light tight oil production outside North America remain small even beyond 2020, as 
we have yet to see sufficient progress in confirming resources, so there is some upside 
potential. It should be noted, however that on the basis of current knowledge, light 
tight oil resources are expected to be of less consequence than shale gas resources: 
whereas the estimated shale gas resources in the United States represent at least 
35 years of 2010 domestic gas demand, the known light tight oil resources make up 
no more than four years of domestic oil demand. This is why we currently project light 
tight oil production in the United States to peak in the 2020s.

The liquids content of shale gas plays is an important consideration in their economic 
viability as NGLs are easily transported to world markets, while market opportunities 
for gas are often only local, at prices that may not be aligned to international prices 
for reasons of policy or infrastructure. However there is always a degree of uncertainty 
about the extent of liquids content until new shales have been drilled and tested.
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International gas trade, markets and security

In the Golden Rules Case, the developments having the most impact on gas markets and 
security are the increasing levels of unconventional production in China and in the United 
States, the former because of the way that it slows the growth in Chinese import needs and 
the latter because it allows for gas exports from North America. The implication of these 
two developments in tandem is to increase the volume of gas, particularly LNG, looking for 
markets in the period after 2020. 

China’s requirement for imported natural gas in the Golden Rules Case grows from around 
15 bcm in 2010 to 80 bcm in 2020 and then to 120 bcm in 2035. These volumes are about 
half the corresponding imports in the baseline case. Chinese gas imports at the levels 
projected in the Golden Rules Case could be covered by existing contractual arrangements 
for LNG and pipeline supplies (from Central Asia and Myanmar) until well into the 2020s, 
pushing back the need for additional projects aimed at the Chinese market.

With the United States developing as an LNG exporter over the period to 2020 and Canada 
also starting to export LNG from its west coast, exports from North America reach 35 bcm 
by 2020, after which they stabilise just above these levels as the opportunities for export 
start to narrow. The influence of these exports on trade flows and pricing is larger than 
these volumes suggest. LNG from the United States, if priced at the prices prevailing on 
the domestic gas trading hub, can compete with oil-indexed gas in both the European and 
Asia-Pacific markets in the Golden Rules Case, and the mere presence of this source of 
LNG (more so than the actual level of export) plays an important role in creating a more 
competitive international market for gas supply.

The total volume of gas traded between WEO regions12 in the Golden Rules Case in 2035 
is 1  015  bcm. This represents an increase of nearly 50%, compared with the volume of 
inter-regional trade in 2010 (Figure 2.6), but it is some 15% below the figure for 2035 in 
our baseline case. The share of inter-regional trade in global supply rises to 22% in 2015, 
but international market conditions start to ease over the period to 2020 and beyond, 
as new sources of unconventional gas start to be developed closer to the main areas of 
consumption. This pick-up in unconventional gas production means that the share of inter-
regional trade in global supply plateaus after 2015 before falling to 20% by 2035, reversing 
the expectation that international trade will play an increasingly important role in meeting 
global needs. 

The European Union’s growing requirement for imported gas accounts for 40% of 
the increase in global inter-regional gas trade in the Golden Rules Case. Here too, the 
development of indigenous unconventional gas moderates somewhat the growth in 
imports, so that they reach 480 bcm in 2035, about 135 bcm more than in 2010. Among 
importing countries in Asia, Japan and Korea (which do not have potential to develop 

12.  Trade between the 25 regions included in the WEM. It does not include trade between countries within a 
single region.
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indigenous production) see imports rise steadily, as does India, whose import requirement 
rises to nearly 90 bcm from around 10 bcm in 2010.

Figure 2.6 ⊳ � Natural gas net trade by major region in the Golden Rules Case
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Box 2.3 ⊳ � Implications for prices and pricing mechanisms

In an environment where gas is potentially available from a greater variety of sources, 
buyers not only in Europe but also in Asia could well insist on greater independence 
from oil prices in the pricing of gas supplies, particularly when gas is used in the fast-
growing power sector in which oil is disappearing as an energy source. The Golden 
Rules Case is likely to see accelerated movement towards hub-based pricing or a 
hybrid pricing system in which alternatives to oil-price indexation plays a much larger 
role in both Europe and across Asia.

The way such a change might play out in practice would depend to a large degree on 
the reaction of the main traditional exporters, who could confront greater risks in 
financing expensive upstream developments and transportation projects. Producers 
such as Russia and Qatar, the largest current exporters of natural gas, have access to 
ample conventional reserves, with costs that are in most cases substantially lower 
than those of unconventional gas (and other conventional producers as well). With 
well-developed export infrastructure, these countries could undercut the prices 
offered by most other exporters on international markets, retaining or expanding 
export volumes by offering gas to markets on more attractive terms than others. 
Alternatively, they could aim to maintain higher prices for their exports, but at the risk 
of losing market share. In the Golden Rules Case, their strategic choice would have 
substantial implications for the location of investment and production, including the 
speed of development of unconventional resources. The net result for gas consumers, 
however, would be broadly the same: lower prices for imported natural gas.
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Russia and the Middle East supplied around 45% of inter-regional gas trade in 2010; this 
declines to 35% in 2035 in the Golden Rules Case, as other players announce or expand 
their presence in the market, notably Australia, the United States and producers in Africa 
and Latin America. From around 20 bcm in 2010, Australia’s exports rise quickly to 120 bcm 
in 2035, based on a rapid expansion of LNG capacity, which permits new markets to be 
captured in the earlier part of the projection period, during which demand for imports 
remains relatively strong. By around 2020, African exports – based on new conventional 
projects and LNG, thanks to the large recent discoveries offshore east and west Africa – 
overtake those from the Middle East.

Overall, the Golden Rules Case presents an improved picture of security of gas supplies. 
High dependence on imports, in itself, is not necessarily an indicator of insecure supply; but 
the conditions observed in the Golden Rules Case of a more diverse mix of sources of gas 
in most markets, including both indigenous output and imports from a range of potential 
suppliers, suggests an environment of growing confidence in the adequacy, reliability and 
affordability of natural gas supplies.

Investment and other economic impacts 

At the global level, for conventional and unconventional gas together, the Golden Rules 
Case requires $9.7  trillion in cumulative investment in gas-supply infrastructure in the 
period 2012 to 2035 (in year-2010 dollars). This represents an increase of $390  billion, 
compared with the baseline case, reflecting the need to bring on more production to meet 
higher demand and a slight increase in unit production costs as unconventional resources 
make up a growing share of production. Spending on gas exploration and development, to 
find new fields and bring them into production and to maintain output from existing ones, 
amounts to nearly $6.9 trillion, bolstered by the large number of new wells required (see 
Spotlight).

Figure 2.7 ⊳ � Cumulative investment in natural gas-supply infrastructure by 
type in the Golden Rules Case, 2012-2035 (in year-2010 dollars)
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How many wells? How many rigs?

Expanded unconventional gas production requires a significant increase in the number 
of unconventional gas wells over the coming decades, though there is a huge range of 
uncertainty when calculating the extent of the requirement for unconventional gas wells 
for a projected level of production. Key variables are the average ultimate recovery per 
well and the average decline rate of production in the early years, both of which vary 
significantly between shale gas, tight gas and coalbed methane wells.13

We estimate that, to meet the global unconventional gas production requirements of 
the Golden Rules Case, more than one million unconventional gas wells would need to 
be drilled globally between 2012 and 2035. For comparison, around 700 000 oil and gas 
wells have been drilled in the United States over the last 25 years and half a million are 
currently producing gas. At present, global drilling activity for both conventional and 
unconventional resources is heavily concentrated in the United States, where more than 
half of the world’s drilling rig fleet (around 2 000 active oil and gas drilling rigs, including 
those used for unconventional gas) is deployed to sustain production of just 9% of the 
world’s oil and 19% of the world’s gas.

In the Golden Rules Case, the United States would still account for around 500  000 
of the new unconventional gas wells required by 2035, with the yearly drilling 
requirement rising from around 7 000 wells per year to 25 000 per year by 2035 (and 
the unconventional gas rig count increasing by the same order of magnitude, given that 
the efficiency of rig use probably has potential for only modest increases). 

China would have a cumulative requirement of some 300 000 unconventional gas wells 
over the projection period and an annual requirement increasing from around 2  000 
in the early years to 20 000 wells nearer 2035. Assuming that drilling becomes more 
efficient with time, this might correspond to an increase in the number of unconventional 
gas drilling rigs from around 400 to 2 000, a demanding increase in the rig count. There 
are an estimated 1 000 rigs in China at present, but only a fraction of these are capable 
of horizontal drilling. 

In the European Union, the cumulative number of wells in the projection period is 
around 50 000, increasing to around 3 000 per year by the 2030s. The number of drilling 
rigs required is between 500 and 600; there are currently around 50 land rigs in Europe, 
of which only around half may be capable of horizontal drilling.

13.  For the purpose of these calculations, we have used an average EUR of around 1 bcf, assumed that about 
50% of EUR is recovered in the first three years of production, and a 15% average decline rate of current 
unconventional gas production (in the United States). Varying these assumptions within a reasonable range 
produces very different outcomes in terms of the number of wells.

S P O T L I G H T
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Unconventional resources attract an increasing share of this upstream investment – 
about 36% before 2020 and 44% in the subsequent period to 2035 – as prospective areas 
mature (Figure  2.7). Being geographically well-dispersed and closer to demand centres, 
unconventional gas diminishes the need for long-distance gas transport infrastructure to 
some degree. Nevertheless, growing trade in the Golden Rules Case requires additional 
LNG facilities and new long-haul pipelines. Cumulative investment in the LNG chain is 
$0.7 trillion and investment in gas transmission and distribution infrastructure, including 
smaller scale networks to connect end-users, absorbs $2.1 trillion. 

The proportion of upstream investment made in countries that hold unconventional 
resources increases. Spending on exploration and development for unconventional gas in 
the United States alone is more than double total upstream spending in any other country 
or region.14 China also becomes one of the world’s leading locations for upstream gas 
investment, thanks to its huge resource base. Countries that were net importers of gas in 
2010 make some of the most significant investments in unconventional gas, accounting for 
more than three-quarters of total unconventional upstream investment (Figure 2.8). This 
investment can generate the wider economic benefits associated with improved energy 
trade balances, lower energy prices and employment, all of which add economic value for 
unconventional resource holders.

Figure 2.8 ⊳ � Cumulative investment in natural gas-supply infrastructure by 
major region and type in the Golden Rules Case, 2012-2035
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* OECD Americas become a net exporter of natural gas by 2020 in the Golden Rules Case.

The outlook for energy trade balances improves for unconventional resource holders in 
the Golden Rules Case. China and the European Union remain large net importers of gas, 

14.  Because of the rapid decline in production in shale gas wells, maintaining production requires continuous 
investment in drilling new wells. This explains why the United States needs the lion’s share of the investment in 
unconventional gas: although it does not grow supply as much as China for example, it needs investment just to 
sustain its already substantial level of unconventional gas production.
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but indigenous unconventional gas production tempers their import bills, which stabilise 
at about 0.2% and 0.7% of GDP, respectively, after 2020. Australia, where production far 
outstrips domestic gas demand, sees export revenues reach nearly 2% of GDP in 2035. Net 
exports of gas bring revenues to the United States after it ceases to be a net gas importer; 
the more substantial impact on energy trade balances in the United States results from 
light tight oil production and increased NGLs from higher unconventional gas production, 
which contribute to a considerable reduction in its oil import bill – to 0.8% of GDP in 2035, 
compared with a peak of 2.8% of GDP in 2008. 

Climate change and the environment

Energy-related CO2 emissions in the Golden Rules Case reach 36.8 gigatonnes (Gt) in 2035, 
an increase of over 20% compared with 2010 (Table 2.7) but lower than the 2035 baseline 
projection by 0.5%. At the global level, there are two major effects of the Golden Rules 
Case on CO2 emissions, which counteract one another. Lower natural gas prices mean 
that, in some instances, gas displaces the use of more carbon-intensive fuels, oil and coal, 
pushing down emissions. At the same time, lower natural gas prices lead to slightly higher 
overall consumption of energy and, in some instances, to displacement of lower-carbon 
fuels, such as renewable energy sources and nuclear power. Overall, the projections in the 
Golden Rules Case involve only a small net shift in anticipated levels of greenhouse-gas 
emissions.

Table 2.7 ⊳ � World energy-related CO2 emissions in the Golden Rules Case 
(million tonnes) 

2010 2020 2035 2010-2035*

OECD 12 363 12 157 10 716 -0.6%
of which from natural gas 3 034 3 336 3 758 0.9%

Non-OECD 16 960 21 327 24 674 1.5%
of which from natural gas 3 082 4 118 5 781 2.5%

World 30 336 34 648 36 795 0.8%

* Compound average annual growth rate.

The Golden Rules Case puts CO2 emissions on a long-term trajectory consistent with 
stabilising the atmospheric concentration of greenhouse-gas emissions at around 
650  parts per million, a trajectory consistent with a probable temperature rise of more 
than 3.5 degrees Celsius (°C) in the long term, well above the widely accepted 2°C target. 
This finding reinforces a central conclusion from the WEO special report on a Golden Age 
of Gas (IEA, 2011b), that, while a greater role for natural gas in the global energy mix does 
bring environmental benefits where it substitutes for other fossil fuels, natural gas cannot 
on its own provide the answer to the challenge of climate change. This conclusion could 
be changed by widespread application of technologies such as carbon capture and storage, 
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which could reduce considerably the emissions from the consumption of gas (and other 
fossil fuels); but this is not assumed in the period to 2035.15

At country level, the impact of the Golden Rules Case on greenhouse-gas emissions from 
gas depends to a large degree on the structure of domestic fuel use, in particular for power 
generation. In countries where the average greenhouse-gas intensity of power generation 
is already close to that of natural gas, as for example in Europe, the addition of extra natural 
gas to the fuel mix has relatively little impact on the overall emissions trajectory. By contrast, 
in countries heavily reliant upon coal for electricity generation, such as China, the increased 
availability of natural gas has a more substantial impact on CO2 emissions. Such increased use 
of gas also reduces emissions of other pollutants; compared with burning coal, combustion 
of natural gas results in lower emissions of sulphur dioxide (SO2), nitrogen oxides (NOX) and 
gas also emits almost no particulate matter. Local emissions of particulate matter and NOX 
are the main causes of low air quality – a particularly important consideration for emerging 
economies seeking to provide energy for fast-growing urban areas. 

Unconventional gas production itself inevitably results in some changes to the land, to surface 
water and to groundwater systems, particularly given the scale of the production envisaged 
in the Golden Rules Case. As indicated in the Spotlight, we estimate that production at these 
levels would require the drilling of over one million new wells in the course of the projection 
period, over half of which would be in the United States and China. These operations have 
to be managed strictly in accordance with the Golden Rules, or the associated social and 
environmental damage will cut short attainment of the Golden Rules Case. 

The Low Unconventional Case
Demand

In the Low Unconventional Case, where the Golden Rules are not applied and 
environmental and other constraints on unconventional gas development provide too 
difficult to overcome, the competitive position of gas in the global fuel mix deteriorates, 
compared with the Golden Rules Case, as a result of lower availability and higher prices. 
Global demand for gas grows more slowly, reaching 4.6  tcm in 2035. The difference in 
primary gas demand in 2035 between the Low Unconventional Case and the Golden 
Rules Case is about 535 bcm, an amount close to total gas demand in the European Union 
in 2010. In the global energy mix, whereas in the Golden Rules Case gas overtakes coal by 
2035, in the Low Unconventional Case the share of gas in the global energy mix increases 
only slightly, from 21% in 2010 to 22% in 2035, remaining well behind that of coal (whose 
share decreases from 28% to 26%) and of oil. 

15.  There is the possibility that the capacities for CO2 storage might be affected by hydraulic fracturing. A recent 
study (Elliot and Celia, 2012) estimated that 80% of the potential area to store CO2 underground in the United 
States could be prejudiced by shale and tight gas development, although others have argued that, even if the 
rock seal in one place were to be broken by hydraulic fracturing, other layers of impermeable rock underneath 
the fractured area would block migration of the CO2.
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The fall in gas demand in the Low Unconventional Case, relative to the Golden Rules Case, 
is mostly compensated for by increased consumption of coal (Figure 2.9). The cumulative 
difference in total primary gas demand over the projection period is around 5 200 Mtoe 
(6.3  tcm); coal accounts for almost three-quarters of the increase in the demand for 
other fuels, the largest coming in China (accounting for about 40% of the additional coal 
demand). The total primary energy used for power and heat generation is higher in the 
Low Unconventional Case because of the substitution of gas-fired generation by coal-fired 
generation; being less efficient, coal plants require more energy to produce the same 
amount of electricity. In power generation, around 75% of the fall in gas-fired power is 
taken up by coal. In total final consumption, the effect is felt primarily through the increase 
in demand for oil, because gas fails to make the same inroads in the transportation sector.

Figure 2.9 ⊳ � Cumulative change in energy demand by fuel and sector in the 
Low Unconventional Case relative to Golden Rules Case,  
2010-2035
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In the Low Unconventional Case, total gas supply is lower, at 4.6 tcm, and unconventional 
production is much lower than in the Golden Rules Case. Unconventional gas production in 
aggregate rises above 2010 levels of 470 bcm but reaches only 570 bcm in 2020 and falls 
back to 550 bcm by 2035. Unconventional gas contributes only 6% to global gas production 
growth over the projection period, meaning that the share of unconventional gas in total 
gas output falls slightly over time, from 14% in 2010 to 12% in 2035. This is a long way 
below the 32% share reached by unconventional gas in 2035 in the Golden Rules Case. 
The difference in unconventional gas production in 2035 between the cases is over 1 tcm, 
equivalent to 5% of total primary energy supply.
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In the Low Unconventional Case, the largest impact is on production of shale gas 
(Figure 2.10). At a global level, shale gas production increases by 40% over the projection 
period, reaching just above 200 bcm in 2035, about one-fifth of the level reached in the 
Golden Rules Case. Tight gas production falls to 165 bcm. Output of coalbed methane is 
slightly more resilient, rising by two-and-a-half times to around 185 bcm, 45% of the level 
reached in the Golden Rules Case. This is accounted for by the fact that coalbed methane 
resources are typically in areas that have existing coal mining operations, in which there is 
often less resistance to coalbed methane operations than to other types of unconventional 
gas development – and that the case can be made on environmental grounds that producing 
the gas is preferable to mining the coal.16

Figure 2.10 ⊳ � Unconventional gas production by type and case
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The reduction in unconventional gas output in the Low Unconventional Case has most 
impact on China and the United States; their total gas production is lower in 2035 by 
280  bcm and 240  bcm, respectively. This represents a 30% reduction in US output, 
but a much larger fall, 60%, in Chinese production relative to the Golden Rules Case 
(Figure 2.11 and Box 2.4). There are also major declines in output in the European Union 
(particularly Poland), India, Canada, Argentina, Mexico, and Indonesia. By contrast, the 
Low Unconventional Case shores up the preeminent position of the main conventional 
gas resource-holders. Even though total gas supply is lower than in the Golden Rules Case, 
Russia (around +115 bcm), Iran (nearly +30 bcm) and Qatar (just over +15 bcm) all post 
significant increases in their 2035 production, compared to the Golden Rules Case. In 
the Low Unconventional Case, increased demand from Europe and China for Russian gas 
means that Russia accounts for 20% of global supply, compared with 15% in the Golden 
Rules Case.

16.  Coalbed methane production can actually reduce methane emissions if the gas would have been released by 
subsequent coal mining activities (this is sometimes referred to as coal mine methane production).
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Figure 2.11 ⊳ � Change in natural gas production by selected region in the 
Low Unconventional Case relative to the Golden Rules Case
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Box 2.4 ⊳ � What could lead to a Low Unconventional Case in China?

The Chinese government has announced ambitious targets for future production of 
coalbed methane and shale gas: 6.5 bcm of shale gas and 30 bcm of coalbed methane 
in 2015, and 60 to 100 bcm of shale gas in 2020. These targets are supported by large 
producer subsidies for both types of resources. Our projections for the Golden Rules 
Case show a somewhat slower rate of increase before 2020, but are generally in line 
with official targets. Public opposition to unconventional gas developments is not 
currently manifest in China; if it were to develop over the projection period without 
gaining a commensurate regulatory and industry response, including application of 
the Golden Rules, the result could be production restrictions leading to an output 
plateau near the level of the 2020 targets, instead of the continuing growth projected 
in the Golden Rules Case. There are other hurdles which could also hold back the 
development of unconventional gas in China:

•	 The resource base could turn out to be much smaller than currently estimated. The 
current resource estimates are largely extrapolations from a small number of wells.

•	 Recovery factors or production rates could be lower than thought. In the United 
States, different gas shale deposits and different coalbed methane deposits yield 
very different levels of production. Not enough is known yet about the Chinese 
reservoirs to confirm that the range of productivity will be similar to that observed
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in the United States. On the assumption of similar productivity, the Golden Rules Case 
will require drilling something like 300 000 new unconventional gas wells in China 
during the projection period, already a very demanding level of activity. Even modest 
reductions in productivity would test the limits of the drilling capacity of the country.

•	 The economics could turn out to be disappointing. Many of the shale gas reservoirs in 
China are known to be deeper and more complex that those currently exploited in the 
United States. Both of these factors have a strong influence on the economics. The 
costs of well construction scale up rapidly with depth. Moreover, most of the coalbed 
methane resources are located far from large consumption centres: transportation 
costs make such resources not much more attractive than imports.

•	 Water availability: a significant part of the shale gas resources is located in regions 
where either water availability is limited or where competition with agricultural users 
of the water resources is likely to be a serious issue. This could limit the number of 
wells and hydraulic fracturing treatments that can be performed in those regions.

•	 Wavering government support: shale gas and coalbed methane production currently 
benefit from large subsidies in order to promote their development. When the 
volumes get large, such subsidies may not be sustainable. Or subsidies to fossil fuels 
in general may become unacceptable in the later part of the projection period. Loss 
of subsidies and worsening economics could curb the growth of unconventional gas 
production from the mid-2020s.

International gas trade, markets and security

The picture of inter-regional trade in the Low Unconventional Case is radically different 
from that described in the Golden Rules Case. The volume of trade is almost 300  bcm 
higher in the Low Unconventional Case in 2035, up about 30%, and some patterns of trade 
are also reversed, with North America requiring large quantities of imported gas to meet its 
net requirements (Figure 2.12). The United States, a strategically significant gas exporter in 
the Golden Rules Case, imports nearly 100 bcm by the end of the projection period in the 
Low Unconventional Case. Despite lower overall gas demand, China’s demand for pipeline 
and LNG imports in 2035 reaches 260 bcm in the Low Unconventional Case, nearly 145 bcm 
higher than in the Golden Rules Case. 
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Figure 2.12 ⊳ � Major natural gas net importers by case 
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Among the exporters, the share of Russia and the Middle East in global inter-regional trade 
increases slightly to 46% in 2035 in the Low Unconventional Case, compared with a drop 
to 35% in the Golden Rules Case. Against a backdrop of rising import dependence in some 
key gas-consuming regions and a more limited number of potential suppliers, the outlook 
for customers for gas in the Low Unconventional Case looks less bright. Competition among 
importers becomes more intense, contributing to tighter markets in Europe and Asia. In 
North America, with the marginal supply coming from international markets, relatively 
expensive LNG imports pull up domestic prices in the United States – the opposite effect 
from the Golden Rules Case, where competitively priced exports have a mitigating effect 
on prices in export markets.

Box 2.5 ⊳ � A hybrid case

The two cases examined here apply favourable and unfavourable assumptions, 
respectively and uniformly, to all countries’ prospects for unconventional gas 
development. But it is also possible that some countries follow a path of rapid growth 
in unconventional resource development along the lines of the Golden Rules Case, 
while others make slow progress or opt not to develop these resources, as in the Low 
Unconventional Case. Perhaps the most plausible of these hybrid cases is one in which 
enhanced attention to environmental issues sustains growth in unconventional output 
in North America and Australia, while elsewhere – with the partial exception of China – 
countries fail to realise the regulatory mix that would allow unconventional gas output 
to grow fast, at least until well into the 2020s. This case is not modelled here, but bears 
a resemblance to the central scenario of the WEO-2011 that will be updated in full in 
this year’s Outlook, to be published in November 2012.
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Investment and other economic impacts

Various constraints in the Low Unconventional Case – moratoria on the use of hydraulic 
fracturing, overly strict regulation, unreasonably high compliance costs, arbitrary 
restrictions on drilling locations, less attractive fiscal terms, limitations on water availability 
and emerging resource limitations – serve to deter upstream investment in unconventional 
resources. Global cumulative investment in unconventional gas falls by half, to some 
$1.4  trillion, compared with the investment in the Golden Rules Case, and 60% of 
investment in unconventional gas is made in the United States. Even so, the share of the 
United States in global cumulative upstream gas investment declines from 24% to 21%. 
Limited prospects for unconventional gas prompt $0.7 trillion more cumulative investment 
in conventional resources. This underscores the relative shift in market power from 
unconventional resource holders to the major conventional producers, notably in Russia, 
the Middle East and North Africa. 

The import bills attached to inter-regional trade rise to $630 billion in 2035 (in year-2010 
dollars) in the Low Unconventional Case, nearly 60% higher than in the Golden Rules Case. 
The proportionate impact on import bills is highest in China and the European Union, but 
the effect in other countries is also marked (Figure 2.13). China’s spending on gas imports 
in 2035 in the Low Unconventional Case reaches almost $150 billion, or almost three times 
the level reached in the Golden Rules Case. Gas-import bills in the European Union rise 
to $245  billion in 2035, 30% above the $190  billion reached in the Golden Rules Case. 
Spending by the United States on gas imports in 2035 in the Low Unconventional Case 
totals $25  billion, around double the level of 2010, whereas the United States is a net 
exporter from 2020 in the Golden Rules Case, with export earnings increasing steadily to 
around $10 billion in 2035. 

Figure 2.13 ⊳ � Natural gas-import bills by selected region and case

 

 

 

-50

0

50

100

150

200

250

India Japan China

2010 

2035: 
Golden Rules 
Case 

2035: 
Low Unconven�onal 
Case 

United 
States 

European
Union 

Bi
lli

on
 d

ol
la

rs
 (2

01
0)

063-100_Chapter_2.indd   98 23/05/2012   16:02:32

©
 O

E
C

D
/IE

A
, 2

01
2



Chapter 2 | The Golden Rules Case and its counterpart 99

2

1

3

It follows that gas import bills expressed as a share of GDP are also sharply higher in the 
Low Unconventional Case than in the Golden Rules Case (Figure 2.14). For example, China’s 
import bills stabilise at 0.5% of GDP towards the end of the projection period compared 
with a plateau of just 0.2% in the Golden Rules Case.

Figure 2.14 ⊳ � Spending on net-imports of natural gas as a share of real GDP 
at market exchange rates by case
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Climate change and the environment

Although the forces driving the Low Unconventional Case derive in part from environmental 
concerns, it is difficult to make the case that a reduction in unconventional gas output brings 
net environmental gains. The effect of replacing gas with coal in the Low Unconventional 
Case is to push up energy-related CO2 emissions, which are 1.3% higher than in the Golden 
Rules Case. The global power generation mix (Figure  2.15) involves a higher share of 
coal-fired power in the Low Unconventional Case, stemming from the more limited role 
for natural gas. Additional investment in coal-fired generation locks in additional future 
emissions, since any new coal-fired power plant has an anticipated operating lifetime in 
excess of 40 years. 

Though many of those concerned with environmental degradation may find it difficult to 
accept that unconventional gas resources have a place in a sustainable energy policy, a 
conclusion from this analysis is that, from the perspective of limiting global greenhouse-
gas emissions, a Golden Rules Case has some advantages compared with the Low 
Unconventional Case, while also bringing with it other benefits in terms of the reliability 
and security of energy supply.
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Figure 2.15 ⊳ � World power generation mix by case
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Nonetheless, reaching the international goal of limiting the long-term increase in the 
global mean temperature to 2°C above pre-industrial levels cannot be accomplished 
through greater reliance on natural gas alone. Achieving this climate target will require a 
much more substantial shift in global energy use, including much greater improvements in 
energy efficiency, more concerted efforts to deploy low-carbon energy sources and broad 
application of new low-carbon technologies, including power plants and industrial facilities 
equipped for carbon capture and storage. Anchoring unconventional gas development in 
a broader energy policy framework that embraces these elements would help to allay the 
fear that investment in unconventional gas comes at the expense of investment in lower-
carbon alternatives or energy efficiency.
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Chapter 3

Country and regional outlooks
Are we moving towards a world of Golden Rules?

Highl ights

•	 The United States is the birthplace of the unconventional gas revolution and regulatory 
developments at both federal and state levels will do much to define the scope and 
direction of similar debates in other countries. Moves are underway to build on existing 
regulation and practice, for example by tightening the rules on air emissions, ensuring 
disclosure of the composition of fracturing fluids and improving public information 
and co-operation among regulators. 

•	 In North America, both Mexico and Canada also have significant unconventional 
gas resources and Canada is one of only a handful of countries outside the United 
States where commercial production is underway. Which way the regulatory debate 
turns could have a substantial effect on future unconventional supply: in the Golden 
Rules Case, total production from North America reaches 1  085  bcm in 2035, of 
which almost 70% is unconventional supply, whereas the equivalent figure in the Low 
Unconventional Case is only 780 bcm; this makes the difference between the region 
exporting to, or importing from, global gas markets.

•	 The prospects for unconventional gas in China are intertwined with the much broader 
process of gas market and pricing reform, and with open questions about the extent 
and quality of the resource. Over the longer term, environmental policies and 
constraints, notably water availability, are also set to play a role. Our projections for 
the Golden Rules Case are for unconventional output to reach just over 110 bcm in 
2020, a very rapid increase but still somewhat lower than ambitious official targets, 
and 390 bcm in 2035. Unconventional production is some 280 bcm lower in 2035 in 
the Low Unconventional Case.

•	 In advance of any substantial unconventional output, the regulatory framework in 
Europe is under examination at both national and EU levels, with a variety of outcomes 
ranging from enthusiastic support for unconventional development from Poland to 
the bans on hydraulic fracturing in place in France and Bulgaria. In our projections 
in the Golden Rules Case, growth in unconventional supply in the European Union 
reaches almost 80 bcm in 2035, which is sufficient post-2020 to offset the decline in 
conventional output. 

•	 New unconventional gas projects in Australia are coming under increased 
environmental scrutiny, in particular related to the risk of water contamination from 
coalbed methane projects. This could constrain future unconventional gas output, 
although Australia has ample conventional resources with which to achieve growth in 
supply and export; exports of 120 bcm by 2035 in the Golden Rules Case come mainly 
from unconventional gas developments, whereas a comparable level of export in the 
Low Unconventional Case is driven by mainly by conventional output.
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United States
Resources and production

Until recently, unconventional natural gas production was almost exclusively a 
US  phenomenon. Tight gas production has the longest history, having been expanding 
steadily for several decades. Commercial production of coalbed methane began in the 
1980s, but only took off in the 1990s; it has levelled off in recent years. Shale gas has also 
been in production for several decades, but started to expand rapidly only in the mid-
2000s, growing at more than 45% per year between 2005 and 2010. Unconventional gas 
production was nearly 60% of total gas production in the United States in 2010. While 
tight gas and shale gas account for the overwhelming bulk of this, shale gas is expected to 
remain the main source of growth in overall gas supply in the United States in the coming 
decades. The United States and Canada still account for virtually all the shale gas produced 
commercially in the world, though – as discussed in Chapter 2 of this report – many 
countries are now trying to replicate this experience.

There are large resources of all three types of unconventional gas across the United States. 
Of the 74 trillion cubic metres (tcm) of remaining recoverable resources of natural gas at 
end-2011, half are unconventional (Table  3.1); in total, gas resources represent around 
110 years of production at 2011 rates. Major unconventional gas deposits in the United 
States are distributed across much of the country (Figure 3.1). Coalbed methane resources 
are found principally in the Rocky Mountain states of Wyoming, Utah, New Mexico, 
Colorado and Montana. Tight gas and shale gas are located in a number of different basins 
stretching across large parts of the United States, some of which are shared with Canada 
and Mexico. Two of the largest shale plays that have been identified, the Marcellus and 
Haynesville formations, taken as single reservoirs are among the largest known gas fields 
of any type in the world.

Table 3.1 ⊳ � Remaining recoverable natural gas resources and production by 
type in the United States

Recoverable resources (tcm) Production (bcm)

End-2011 Share of total 2005 2010 Share of total 
(2010)

Unconventional gas 37 50% 224 358 59%

Shale gas 24 32% 21 141 23%

Tight gas 10 13% 154 161 26%

Coalbed methane 3 4% 49 56 9%

Conventional gas 37 50% 288 251 41%

Total 74 100% 511 609 100%

Sources: IEA analysis and databases.
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Figure 3.1 ⊳ � Major unconventional natural gas resources in North America 
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Regulatory framework

As pioneers of large-scale unconventional gas development, policy-makers, regulators, 
producers and the general public in the United States have been the first to face the question 
of how to evaluate and minimise the associated environmental risks. The emergence of 
unconventional gas production on a large scale has prompted a broad debate, particularly 
as production has moved out of traditional oil and gas producing areas. It has also led to 
changes in the regulatory framework and industry practices. As described in Chapter 1, 
the principal areas of concern are the impact of drilling on land use and water resources 
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(in particular, the possible contamination of aquifers and surface water) and possible 
increases in air emissions, particularly of methane and volatile organic compounds. 

The legal and regulatory framework for the development of unconventional resources 
in the United States is a mixture of laws, statutes and regulations at the federal, state, 
regional and local levels. Most of these rules apply to oil and gas generally and were in 
place before unconventional resource development took off. They cover virtually all phases 
of an unconventional resource development, from exploration through to site restoration, 
and include provisions for environmental protection and management of air, land, waste 
and water. States carry the primary responsibility for regulation and enforcement on lands 
outside federal ownership. This approach allows for some regionally specific conditions, 
such as geology or differing economic or environmental priorities, to be taken into account, 
with consequential variations in regulatory practices among states. However, on federal 
lands (extensive in the western United States), the federal government owns the land and 
mineral resources and directly regulates the extraction process.

Federal laws applicable to unconventional gas resource development are directed mainly 
at environmental protection. They include the Clean Air Act, Clean Water Act and Safe 
Drinking Water Act. Certain exemptions from federal rules have been granted; for example, 
hydraulic fracturing is excluded from the list of regulated activities under the Underground 
Injection Program authorised by the Safe Drinking Water Act (unless diesel-based fracturing 
fluids are used). Federal regulations related to community protection and occupational 
health and safety require that operators make information on certain hazardous chemicals 
used in drilling operations, including fracturing fluids, available to officials and those 
responsible for emergency services. Federal rules do not pre-empt additional state-level 
regulations and public concerns about the risk of pollution have prompted some states to 
require wider public disclosure about the types and volumes of chemicals used.

State-level regulations relevant to unconventional resources are typically specified in state 
oil and gas laws; in some cases, these are being updated to respond to public concerns 
about the environmental impact of unconventional gas development. Typical changes 
include rules about disclosure of information on fracturing fluids, additional measures 
to ensure adequate integrity in well casing and cementing, and rules on the treatment 
and disposal of waste water. Yet regulatory gaps remain in many states, not least because 
some have limited experience with oil and gas development. The states of New York, New 
Jersey and Maryland have enacted temporary bans on hydraulic fracturing pending further 
review of its environmental impacts and the need for changes to regulations; at the time of 
writing, Vermont also seems set to enact a ban.

Efforts to strengthen the United States’ regulatory framework are a public priority, in 
order to ensure responsible development of unconventional resources and respond to 
rising public anxiety and pressure. Among the many public organisations focusing on the 
environmental aspects of unconventional gas development, two are working specifically 
on improving the quality of regulatory policy: the Ground Water Protection Council and 
the State Review of Oil and Natural Gas Environmental Regulations (STRONGER). They 

101-136_Chapter_3.indd   104 23/05/2012   16:03:31

©
 O

E
C

D
/IE

A
, 2

01
2



Chapter 3 | Country and regional outlooks 105

2

1

3

have both been advising states on regulatory matters to do with unconventional gas. The 
industry itself has taken steps to promote best practice, both through industry bodies, 
such as the American Petroleum Institute and through initiatives such as the creation of 
the FracFocus website, a voluntary online registry to which companies submit data about 
chemicals used in hydraulic fracturing operations (API, 2011). The site is managed through 
a partnership with the Ground Water Protection Council and the Interstate Oil and Gas 
Compact Commission.

The United States Environmental Protection Agency has issued federal regulations under 
the Clean Air Act that aim to reduce emissions of volatile organic compounds from all 
operations of the oil and gas industry; these will also cut methane emissions. The 
regulations apply to wells that are hydraulically fractured and will, in essence, enforce the 
use of “green completions”, as already mandated in Colorado and Wyoming. The Bureau of 
Land Management, responsible for regulation of most energy-related activities on federal 
land, has proposed new rules that would require companies to disclose the composition of 
fracturing fluids, seek additional permits and conduct stringent well integrity tests. These 
initiatives have sparked an intense debate among interested parties as to whether hydraulic 
fracturing should be regulated at both state and federal level, and whether harmonised 
regulations on federal lands and on neighbouring leases are required.

At the end of 2011, the Shale Gas Subcommittee of the Secretary of Energy Advisory Board 
issued a set of twenty recommendations for short-term and long-term actions by federal 
and state agencies to reduce the environmental impact and improve the safety of shale gas 
production (US DOE, 2011). A major study by the National Petroleum Council on the future 
of oil and gas resources in the United States has also emphasised the need for “prudent 
development” and concluded that the benefits of the country’s oil and gas resources can 
be realised by ensuring that they are developed and delivered in a safe, responsible and 
environmentally acceptable manner in all circumstances (NPC, 2011). These studies and 
recommendations have been important in defining the scope of regulatory change in the 
United States and setting its direction; by extension, they could be influential in many 
countries that are seeking to undertake unconventional gas development.

Within this diverse structure, a major challenge is to maintain reasonable consistency 
of regulation (for example, among the different states), closing regulatory gaps, where 
necessary, and doing this in a way that encourages best practice and responds to changes 
in production technology. Unconventional resource production may be well underway in 
United States, but shale gas development – and hydraulic fracturing in particular – has 
become an emotive public issue, with strong and well-organised positions taken by many 
of the parties involved. This has complicated the prospects for constructive engagement, 
limiting the common ground on which new regulation (at federal or state level) or new 
projects (at local level) might be based. Given the scale and pace of development in the 
United States, there is a likelihood that regulation will be driven by events. For example, 
an environmental incident linked to unconventional gas development could crystallise 
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public views and prompt new restrictions on unconventional gas production or the use of 
hydraulic fracturing.

Projections and implications

Assumptions about the regulatory environment have a marked impact on the results of 
the two cases examined in this report.1 In the Golden Rules Case, total gas production in 
the United States grows from around 610 billion cubic metres (bcm) in 2010 to 820 bcm in 
2035 (Figure 3.2). Almost all of this increase comes from shale gas production: output of 
conventional gas, coalbed methane and tight gas remain close to current levels. As a result, 
the share of shale gas in total gas production rises from 23% in 2010 to 45% in 2035; total 
unconventional production takes a 71% share of gas output by 2035.

Figure 3.2 ⊳ � Natural gas balance in the United States in the Golden Rules 
Case*
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In the Low Unconventional Case, total gas production goes into decline after peaking at 
660 bcm around 2015, falling to 580 bcm in 2035, 30% less than in the Golden Rules Case 
(Table 3.2). Production of shale gas in the United States grows until 2017 before limitations 
on access to resources cause output to fall back to 2010 levels; tight gas and coalbed 
methane production also decline, to levels seen around 2000 and 1990, respectively. In 
the Low Unconventional Case, the share of unconventional gas in total supply decreases to 
only 47% by the end of the Outlook period – 23 percentage points less than in the Golden 
Rules Case. On the other hand, higher gas prices and limited unconventional production in 
the Low Unconventional Case prompt a mini-renaissance in conventional gas output, with 
an increase of more than 50 bcm over 2010 production, driven by the investment capital 

1.  See Chapter 2 for details of assumptions in both cases.
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and rigs freed up by the shrinking unconventional sector and the possible opening of more 
offshore and Arctic acreage as the United States struggles to reduce its imports and the 
associated bills.

These results point in two very different directions for the United States’ domestic 
consumers of gas and its gas industry and its role in international markets. On the domestic 
market, although gas prices are set to increase in both cases, the rate of the price increase 
is moderated in the Golden Rules Case by the availability of domestic unconventional 
gas. United States gas consumption grows by 0.6% per year in this case, a modest rate of 
increase by global standards (reflecting the maturity of the gas market), but much more 
impressive considering that overall energy demand growth in the United States averages 
0.1% per year (so gas consumption grows six times faster than overall energy demand2). 
In the United States, IHS Global Insight estimates that the lower gas prices attributable 
to shale gas production will save households $926 per year between 2012 and 2015 (IHS, 
2011). Cheaper gas also stimulates industries – chemicals and fertilisers, in particular – 
that rely on gas as a key feedstock or source of energy. Several chemical companies have 
announced expansion plans in the United States (PWC, 2011). In the Low Unconventional 
Case, gas consumption in the United States grows until 2020 and then declines thereafter, 
ending almost 15% lower by 2035 than in the Golden Rules Case.

Table 3.2 ⊳ � Natural gas indicators in the United States by case

Golden Rules  
Case

Low Unconventional 
Case Delta* 

2010 2020 2035 2020 2035 2035

Production (bcm) 609 726 821 637 578 242
Unconventional 358 489 580 383 274 306
Share of unconventional 59% 67% 71% 60% 47% 23%

Cumulative investment in 
upstream gas, 2012-2035** 1 648 1 293 355

Unconventional 1 308 854 454

Net trade (bcm): 
net imports (+) / net exports (-) 71 -9 -33 57 97 -131

Imports as a share of demand 10% n.a. n.a. 8% 14% n.a.

Share of gas in the energy mix 25% 26% 28% 25% 24% 4%

Total energy-related CO2 
emissions (million tonnes) 5 343 5 218 4 618 5 173 4 511 108

* Difference between the Golden Rules Case and the Low Unconventional Case. ** Investment figures are 
in billions of year-2010 dollars.

2.  This figure for the United States is higher, for example, than the comparable figure for China, where gas 
demand grows by an average of 7% per year in the Golden Rules Scenario, “only” about four times faster than 
total energy growth averaging 1.9% per year.
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The boom in shale gas thus far has already transformed prospects for gas trade. The future 
of this unconventional “revolution” will determine whether the United States becomes an 
influential gas exporter over the coming decades or, alternatively, sees its imports rise from 
current levels. As recently as 2008, the United States was projected to require increasing 
imports of liquefied natural gas (LNG) to meet incremental gas demand (US DOE/EIA, 
2008). In the Low Unconventional Case, this again becomes a prospect as domestic 
production declines. 

In the expectation of a more favourable outlook for unconventional gas supply, a number 
of projects have been proposed to convert idle regasification terminals into liquefaction 
facilities to enable LNG exports (see Chapter 2). The most advanced of these, Sabine Pass 
on the United States Gulf Coast, cleared the last of its regulatory hurdles in April 2012 and 
could be exporting as soon as late 2015, with a target throughput of 22 bcm per year. A 
further seven projects await Department of Energy export approval, totalling in excess of 
120 bcm of capacity. While not all these projects will proceed by 2020, even an additional 
two projects could see United States LNG export capacity exceed 60 bcm by 2020. 

The prospect of LNG export has ignited a debate in the United States about the possible 
impact on price levels, with domestic gas-intensive industrial users expressing concern 
that they might lose an element of their current competitive advantage. We assume that 
other LNG export projects besides Sabine Pass are approved to begin operation but, in the 
Golden Rules Case, because of limited opportunities for export, the additional capacity 
may not be needed: LNG exports out of North America reach 40 bcm in 2035 but this is 
split between the United States and Canada. As discussed in Chapter 2, such exports and 
capacity would nonetheless have significant implications for the structure of international 
gas markets and for gas security, especially since a part of these exports would be based on 
a gas-priced formula, derived from the Henry Hub price.

Successfully meeting public concerns by putting in place the regulatory conditions that 
deal convincingly with environmental risks could be expected to have a significant impact 
on the pace of development of unconventional gas resources in other parts of the world. 
The United States has been the testing ground for unconventional gas technology and the 
place where this technology has been most widely and most productively applied. Just 
as experience from the United States has prompted both global interest in developing 
unconventional resources and reservations about their environmental impact, so too will 
other countries look to the United States for evidence that social and environmental risks 
can be managed successfully, in part with appropriate regulation.

Canada
Resources and production

Canada is endowed with large unconventional gas resources of all three types and is one 
of only a handful of countries outside the United States where commercial production is 
underway. Production of tight gas was around 50 bcm in 2010 and production of coalbed 
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methane (concentrated in the province of Alberta) close to 8 bcm. Shale gas is believed to 
have the greatest production potential in the longer term, although commercial production 
is only 3 bcm. The main Canadian shale gas plays currently being explored and appraised 
are the Horn River Basin and Montney shales in northeast British Columbia, the Colorado 
Group in Alberta and Saskatchewan, the Utica Shale in Quebec and the Horton Bluff Shale 
in New Brunswick and Nova Scotia (Figure  3.1). Remaining recoverable unconventional 
resources in Canada at end-2011 are estimated to be 18  tcm (11  tcm shale gas, 5  tcm 
coalbed methane and 2 tcm tight gas), representing around 6% of world unconventional 
resources. 80% of Canada’s total remaining recoverable gas resources are unconventional. 

Regulatory framework

Unconventional gas in Canada is subject to a set of federal, provincial and local laws and 
regulations governing upstream activities, including those relating to environmental impacts. 
Most oil and gas regulations are provincial, as the resources belong to the provinces (with 
the exception of those on native lands). The National Energy Board is the federal regulatory 
body for international and inter-provincial energy issues, while Environment Canada is the 
federal agency responsible for environmental protection, including the administration and 
enforcement of federal laws. 

The regulatory picture in Canada varies by province, but in response to public pressure 
and the heightened commercial interest in Canadian unconventional gas opportunities, 
regulators across the country are paying increasing attention to the potential pollution 
risks from hydraulic fracturing and to the disposal of waste water from unconventional 
wells. While each province has its own particular regulations, all jurisdictions have laws to 
protect fresh water aquifers and to ensure responsible development. In western Canada, 
gas producers are required by regulation to re-inject produced water into deep saline zones 
located far below the base of the groundwater, using water disposal wells. In other regions, 
where no such disposal wells are available, provincial regulations set requirements for 
treating and disposing of produced water. 

Approvals for water use are required from the responsible regulatory agency or government 
department. Regulators and governments have a variety of control mechanisms available 
to manage water use and mitigate potential impacts, including the ability to limit the rate 
at which water is used from any source and to specify aggregate water use limits. There are 
also regulations aimed at minimising the environmental footprint of drilling and production 
operations, for example by requiring centralised drilling pads and requiring land restoration 
after production has ceased.

As in the United States, industry bodies are promulgating and promoting best practices. 
The Canadian Association of Petroleum Producers has recently issued new guidelines for 
its members, covering many of the issues in the Golden Rules (CAPP, 2012). The Energy 
Resources Conservation Board, the regulator for the Province of Alberta, a province with a 
long history of oil and gas production, has initiated a review of its regulatory framework as 
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it applies to unconventional gas (ERCB, 2011). Five of Canada’s provinces and one territory 
are associate members of the United States Interstate Oil and Gas Compact Commission.

The prospect of expanded drilling for shale gas has generated some public and political 
concern; the clearest incidence of this led the provincial government in Quebec to call a 
halt in 2011 to the use of hydraulic fracturing, pending an environmental review of the 
impacts of this practice on water supplies. This followed commercial interest in developing 
the Utica shale which, running near population centres along the St Lawrence River, 
generated substantial local opposition. The review is expected to report in 2013. 

Projections and implications

Unconventional gas in Canada is expected to play an increasingly important role in 
offsetting a projected decline in conventional gas production and meeting rising domestic 
demand. In the Golden Rules Case, unconventional gas production rises from 62 bcm in 
2010 to about 120 bcm in 2035, its share of total gas output increasing from just under 
40% to two-thirds (Figure 3.3). Shale gas and, to a slightly lesser extent, coalbed methane 
drive this growth. Total gas production increases from 160 bcm to nearly 180 bcm between 
2010 and 2035. Canadian gas demand grows even faster, so net exports drop sharply – 
from around 65 bcm in 2010 to 25 bcm in 2035. The United States has less need – possibly 
none at all – to import gas from Canada as its own production of unconventional gas 
is projected to outpace its domestic gas needs. While Canadian LNG exports to Pacific 
markets commence before 2020, further growth in exports to Asia is limited in the Golden 
Rules Case by the large increase in domestic production in China, as well as the rise in 
unconventional production in Indonesia and Australia.

Figure 3.3 ⊳ �Natural gas balance in Canada in the Golden Rules Case*
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In the Low Unconventional Case, shale gas production remains relatively robust, even with 
the assumed limitations on access to resources. It is about the only unconventional gas 
resource type with room to grow to offset otherwise rising North American demand for 
imports. However, overall gas production peaks before 2025 and falls back below current 
levels by the end of the projection period (Table 3.3). The higher prices that result from 
slower development constrain demand, which reaches around 130 bcm in 2035, 15% lower 
than in the Golden Rules Case. Although production is lower in the Low Unconventional 
Case, it is noteworthy that the required upstream investment is at a level similar to that in 
the Golden Rules Case; this is because of the relative resilience of shale gas production in 
the Low Unconventional Case and to the assumption (built into the model) that production 
tends to become more costly as a given resource starts to become more difficult to access. 
Since access to shale gas resources is limited in this case, the cost of production rises in a 
way that balances the effect of lower output on the overall investment requirement.

Table 3.3 ⊳ � Natural gas indicators in Canada by case
Golden Rules 

Case
Low Unconventional 

Case Delta* 

2010 2020 2035 2020 2035 2035

Production (bcm) 160 174 177 173 141 37

Unconventional 62 100 119 82 84 35

Share of unconventional 39% 57% 67% 48% 60% 7%

Cumulative investment in 
upstream gas, 2012-2035** 292 296 -4

Unconventional 218 207 11

Net exports (bcm) 66 55 26 63 12 14

Share of gas in the energy mix 30% 34% 40% 32% 35% 5%

Total energy-related CO2 
emissions (million tonnes) 523 547 540 533 521 19

* Difference between the Golden Rules Case and the Low Unconventional Case. ** Investment figures are 
in billions of year-2010 dollars.

Mexico
Resources and production 

Mexico’s large resources make it one of the most promising countries for shale gas 
development. Its 19 tcm of shale gas is the fourth-largest shale gas resource base in the 
world after China, the United States and Argentina; this figure represents some 85% of 
Mexico’s remaining recoverable gas resources. While known about for more than two 
decades, as elsewhere, shale gas was not considered economically viable to produce until 
recently. 

The government is keen to exploit shale gas resources to boost the country’s flagging 
output of conventional oil and gas. In its National Energy Strategy 2012-2026, for the first 
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time, the Mexican Ministry of Energy has included two scenarios for the development 
of shale gas: the baseline scenario foresees production of 2  bcm (200  million cubic 
feet per day [mcf/d]) starting in the Eagle Ford shale play in 2016 and reaching 14 bcm 
(1  343  mcf/d) in 2026 (Secretaria de Energia, 2012). The “strategy scenario” assumes 
the additional development of the La Casita shale play, which leads to total shale gas 
production of 34 bcm (3 279 mcf/d) in 2026. 

In line with this strategy, Pemex, the national oil company, is looking in particular at the 
areas in the north that are extensions of the Eagle Ford shale play (Figure 3.1). Pemex sunk 
its first shale gas well, Emergente 1, in the Burgos basin in February 2011 and this has been 
producing at a rate of almost 30 million cubic metres (3 mcf/d). Pemex plans to drill around 
175 wells during the period 2011 to 2015 to evaluate reserves and delineate priority areas 
for development. Pemex also plans to acquire about 10 000 square kilometres of three-
dimensional seismic data, which it will use to carry out detailed geological and geochemical 
modelling studies. 

If this exploration effort demonstrates the commercial viability of shale gas production, 
the large-scale development of these resources would require a huge increase in drilling. 
Pemex estimates that the development of 8.4 tcm (297 trillion cubic feet) of shale gas – 
its central estimate of recoverable resources – would call for drilling a total of more than 
60 000 wells3 over the next 50 years, requiring a very large-scale capital investment. 

In addition to the need for adequate investment, a number of technical challenges would 
need to be overcome for this to happen, notably adequate access to water for hydraulic 
fracturing. Coahuila, where much of the Eagle Ford play is located, is one of Mexico’s driest 
states, with rainfall less than half the national average and all of the surface water rights 
have already been allocated. Three-quarters of the state’s water is used in agriculture for 
the production of grains and other crops that can survive the desert climate, while the 
rest is for industrial consumption. Hydraulic fracturing on a large scale would require very 
careful treatment and recycling of waste water to reduce the need for fresh water. Other 
hurdles to shale gas development, such as the lack of pipeline infrastructure to deliver 
gas to market, could complicate operations and make the cost of drilling shale gas wells in 
Mexico significantly higher than in the United States. A plan to increase the transport and 
distribution capacity for natural gas is being implemented, including a pipeline that will run 
close to the main gas-rich areas in the northern parts of the country.

3.  Information provided in a presentation by Carlos Morales, Director General, PEMEX Exploration & 
Production, to the IEA Workshop on Unconventional Gas in Warsaw, 7 March 2012. This appears to be based on 
an Estimated Ultimate Recovery (EUR) of 5 bcf per well; this is representative of good wells in the United States 
but could overestimate a likely average EUR per well; if so, the number of wells required to produce this volume 
of shale gas could be higher.
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Regulatory framework

The environmental impact of gas development in Mexico is covered by existing 
environmental, health and safety laws and regulations. There are no specific national 
regulations in place yet for shale gas; however, the new National Energy Strategy 2012-2026 
recognises that the new targets for shale gas production might require specific regulatory 
provisions and calls for the future development of an “integrated strategy” for shale 
gas, addressing environmental, social and financial challenges. This will require not only 
attention to the regulatory framework, but also the allocation of sufficient resources to 
regulatory bodies to ensure adequate supervision and enforcement.

Pemex holds monopoly rights over all upstream activities in Mexico and no other company 
is allowed to own hydrocarbons reserves or undertake exploration or production for its 
own benefit. A law adopted in 2008 allows Pemex to sign incentive-based development 
contracts with other companies, though the price paid for services cannot be linked to 
production: three such contracts for the development of small, mature onshore fields were 
awarded in August 2011. Larger contracts, which could have a more substantial impact on 
the country’s production, are expected to be offered in future. 

The strategy to be developed for shale gas could follow one of a range of possibilities: 
it could rest heavily on assistance from companies under service contracts, either basic 
in terms of remuneration or more strongly incentive-based, although it is also possible 
that Pemex could decide to handle all shale development on its own. The pace of shale 
gas development will depend in part on the approach chosen; a greater involvement of 
private firms, beyond the arrangements already provided for in current legislation, could 
accelerate the process, but may be politically challenging. 

Projections and implications

Shale gas could make a significant contribution to meeting Mexico’s gas needs in the longer 
term, but much will depend on the regulatory regime governing participation by private 
companies and whether the environmental challenges – notably related to the use and 
recycling of water for hydraulic fracturing – can be overcome. Development costs will 
have to be low enough to allow domestic resources to compete with imports from the 
United States, the price of which recently hit new lows. The alternative – to try and protect 
the domestic market from cheaper gas imports – is difficult in the context of Mexico’s 
participation in the North American Free Trade Agreement. 

In the Golden Rules Case, Mexican gas production grows from 50 bcm in 2010 to almost 
90 bcm in 2035, with nearly all of the increase coming from unconventional gas (mostly 
shale gas, plus some tight gas); conventional gas production grows slightly to around 
50 bcm by the end of the projection period, as new fields struggle to compensate for the 
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continuing decline in output from the Cantarell field and other mature fields.4 Shale and 
tight gas production reach about 37 bcm combined in 2035, accounting for close to 45% of 
total Mexican gas production (Figure 3.4). In the Low Unconventional Case, unconventional 
gas production remains negligible through to 2035.

Figure 3.4 ⊳ � Natural gas balance in Mexico in the Golden Rules Case*
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* The sum of production and net imports represents total demand.

Rapid growth in unconventional gas would have a major impact on Mexico’s overall energy 
mix, with the lower gas prices encouraging gas use and leading to an increase in gas demand. 
In the Golden Rules Case, demand rises from around 60 bcm in 2010 to 105 bcm in 2035, 
the share of gas in total primary energy use increasing from 29% to 35% (Table 3.4). The 
country’s need to import gas varies over time. It currently imports about 20% of its gas 
needs, by pipeline from the United States and in the form of LNG; these imports rise to 
nearly 30  bcm by 2020, but then fall back to about 20  bcm by 2035 as gas production 
outstrips demand growth. Higher gas demand and lower imports promise energy security 
and economic benefits to Mexico, with the possibility of net environmental benefits. In the 
Low Unconventional Case, the share of gas in primary energy demand actually drops, to 
28% by 2035, leading to higher energy-related carbon-dioxide (CO2) emissions relative to 
the Golden Rules Case.

4.  In the strategy scenario, or high case, included in Mexico’s National Energy Strategy 2012-2026, conventional 
gas production increases from around 60 bcm in 2011 to almost 85 bcm in 2026. Shale gas production, on its 
own, contributes around 34 bcm to total natural gas production in 2026.
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Table 3.4 ⊳ � Natural gas indicators in Mexico by case

Golden Rules 
Case

Low Unconventional 
Case Delta*

2010 2020 2035 2020 2035 2035

Production (bcm) 50 52 87 46 59 28

Unconventional 2 6 37 0 0 37

Share of unconventional 3% 12% 43% 0% 0% 43%

Cumulative investment in 
upstream gas, 2012-2035** 140 111 29

Unconventional 47 - 47

Net imports (bcm) 12 28 19 25 28 -9

Imports as a share of demand 19% 35% 18% 35% 32% -14%

Share of gas in the energy mix 29% 32% 35% 29% 28% 7%

Total energy-related CO2 
emissions (million tonnes) 402 449 492 455 511 -19

* Difference between the Golden Rules Case and the Low Unconventional Case. ** Investment figures are 
in billions of year-2010 dollars.

China
Resources and production

The size of unconventional gas resources in China is at an early stage of assessment, 
but it is undoubtedly large. At end-2011, China’s remaining recoverable resources of 
unconventional gas totalled almost 50  tcm, comprised of 36  tcm of shale gas, 9  tcm of 
coalbed methane and 3 tcm of tight gas.5 This is around thirteen times China’s remaining 
recoverable conventional gas resources. China’s shale gas resources lie in several large 
basins spread across the country, with plays in the Sichuan and Tarim Basins believed to 
have the greatest potential. The main coalbed methane deposits are found in the Ordos, 
Sichuan and Junggar Basins (Figure 3.5). 

Coalbed methane is currently the primary source of unconventional gas produced 
commercially in China, with output of around 10 bcm in 2010. Most of this output comes 
from coal producers PetroChina and China United Coal Bed Methane Company. Shale gas 
exploration activities have increased in recent years under a government-driven programme 
to evaluate the resource base. Results from several pilot projects, to be completed in 2012, 
are expected to inform the selection of high potential areas for further exploration. As 
of early 2012, an estimated 20 shale gas wells had been drilled by Chinese companies. 
Based on what is known about China’s geology at this early stage, shale gas resources may 
prove more difficult and more expensive to develop than those in North America. Early 

5.  We use the ARI estimate for shale gas to be consistent with our methodology for other countries. This is 
higher than the 25 tcm estimated by China’s Ministry of Land and Resources for recoverable shale gas resources; 
however the MLR number does not yet include all provinces (MLR, 2012).
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indications are that kerogen quality in the shale plays is relatively poor, resulting in low 
organic content. This suggests that, for China to achieve a similar output to that of the 
United States, it would need to drill more wells, with longer reach.

Figure 3.5 ⊳ � Major unconventional natural gas resources in China

This document and any map included herein are without prejudice to the status of or sovereignty over any territory,

to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.
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The Chinese government has outlined ambitious plans for boosting unconventional gas 
exploration and production. These call for coalbed methane production of more than 
30 bcm and for shale gas production of 6.5 bcm in 2015; the targets for shale gas output 
in 2020 are between 60 and 100 bcm. They are accompanied by the goal to add 1 tcm of 
coalbed methane and 600 bcm of shale gas to proven reserves of unconventional gas by 
2015. In support of this effort, China plans to complete a nationwide assessment of shale 
gas resources and build nineteen exploration and development bases in the Sichuan Basin 
in the next four years. Efforts are also supported by the international partnerships that 
Chinese companies have formed in North America to develop shale gas acreage, which will 
provide valuable development experience. 

An initial tender for four blocks of shale gas exploration acreage in the Sichuan Basin was 
held in June 2011, with participation limited to six eligible state-controlled companies. Of 
those, Sinopec and Henan Provincial Coal Seam Gas Development and Utilization Company 
obtained licences. An expanded group of bidders, including privately-owned Chinese 
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companies (qualified based on sufficient capital, technology and expertise), are expected 
to participate in a second round of licensing in mid-2012. Foreign firms will not be allowed 
to participate directly, but may enter into partnerships with eligible companies that submit 
successful bids. Various major international oil companies have already entered into some 
form of partnership with state-controlled companies, reflecting their strong interest in 
pursuing unconventional gas development opportunities in China.

Regulatory framework

China’s huge unconventional gas potential and strong policy commitment suggest that 
these resources will provide an increasingly important share of gas in the longer term, 
though the pace of development through to 2020 – the key period of learning – remains 
uncertain. Because of China’s highly centralised regulatory and policy-making framework 
and the high priority placed on industrial and economic development, unconventional 
gas projects may face fewer hurdles stemming from environmental concerns than those 
in Europe or the United States. Nonetheless, the regulatory framework is evolving, and 
different features of it could affect the pace of development in different ways, for example 
the terms of access, the pace of diffusion of advanced technology, financial incentives, the 
pricing regime, environmental constraints and infrastructure development.

Strategic policy decisions in China relating to resource management and environmental 
protection are made nationally, with implementation and enforcement responsibilities 
often delegated to local authorities. Many aspects of China’s legal and regulatory 
framework for oil and gas development are broadly defined, giving local regulators latitude 
to consider project-specific circumstances in their decisions (although this can also lead 
to unpredictable outcomes). Challenges arise from the fragmentation and overlap of 
responsibilities among various regulating entities, uncertainty about effective co-ordination 
between them and potentially inconsistent enforcement of regulations.

Domestic petroleum exploration and development has traditionally been the domain 
of China’s state-owned enterprises. Under the Law on Mineral Resources, only state-
controlled entities may acquire mineral rights, foreign companies being confined to 
minority partnerships with state-controlled entities and, in some cases, production-sharing 
agreements. Although the strategic importance of unconventional gas means that China’s 
national oil companies are likely to be the primary drivers of production growth, there are 
some changes underway in response to China’s ambitious plans for shale gas exploration 
and development, and the need for the advanced technology and investment that foreign 
companies can bring. The legal classification of shale gas as a separate “mineral resource” 
in late 2011 means that the current regulations that give CNPC and SINOPEC exclusive 
rights for exploration of onshore oil and gas resources do not apply to shale gas, and this 
step may presage an intention to grant greater access to others. Foreign companies have 
already been allowed to take a majority stake in coalbed methane projects. 
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All project promoters must conduct an environmental impact assessment, which must 
be filed with national and local regulators and approved in advance of submission of a 
field-development plan. Drilling permits are issued on the basis of the development plan, 
rather than well-by-well; and any significant changes to the plan, for example related to 
the density of drilling, require submission of a new environmental impact assessment. 
Project delays during the early phases of development may occur because of the limited 
experience of producing unconventional gas in China. 

Water availability may prove to be one of the biggest obstacles to unconventional gas 
development in China, particularly in the north and west, where water is scarce and may 
be already strained by agricultural or urban needs. Water policies, regulations and plans 
are determined nationally, though responsibilities for management and enforcement are 
delegated locally. Many different entities are involved at the national, regional and local 
levels, which risks limited co-ordination of water resources at the river basin level. National 
standards establish maximum discharge concentrations for pollutants into water sources 
and the Circular Water Law promotes reuse and recycling of waste and produced water.

The fiscal regime, gas pricing policies and pipeline access are other regulatory variables 
that will critically influence the pace of unconventional gas development in China. The 
12th Five-Year Plan promises favourable fiscal incentives to producers, namely direct 
subsidies, preferential tax treatment and priority land use. The domestic coalbed methane 
industry receives price subsidies of RMB 0.2 ($0.03) per cubic metre for extracted gas and 
RMB 0.25/m3 ($0.04) for gas produced for some specific end-users. Shale gas might be 
expected to attain a similar or higher level of subsidy. According to the 12th Five-Year 
Plan, the pricing regime for shale gas will be market-based, an important signal that the 
government is willing to allow higher end-user prices (relative to current controlled prices 
for natural gas) to encourage development. China’s gas pipeline network will necessarily 
have to expand to reach into unconventional gas production areas in order to avoid 
becoming a bottleneck as output increases. As major gas pipelines are currently run by 
national oil companies, making access more available to other producers will be vital.

Projections and implications

Gas is set to play an increasingly important role in meeting China’s burgeoning energy 
needs and the successful development of the country’s unconventional resources could 
accelerate that trend, given effective resource and environmental management. In the 
Golden Rules Case, unconventional gas production is projected to jump from 12  bcm in 
2010 to just over 110 bcm in 2020 and 390 bcm in 2035. Total gas production rises from just 
under 100 bcm in 2010 to nearly 475 bcm in 2035 (Figure 3.6). Unconventional gas accounts 
for 83% of total gas production by the end of the projection period. Unconventional gas 
production in 2035 is predominately from shale gas (56%) and coalbed methane (38%); 
tight gas (6%) takes a smaller share.
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Figure 3.6 ⊳ � Natural gas balance in China in the Golden Rules Case*
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Table 3.5 ⊳ � Natural gas indicators in China by case

Golden Rules 
Case

Low Unconventional 
Case Delta*

2010 2020 2035 2020 2035 2035

Production (bcm) 	 97 246 473 139 194 279

Unconventional 12 112 391 37 112 279

Share of unconventional 12% 45% 83% 27% 58% 25%

Cumulative investment in 
upstream gas, 2012-2035** 554 311 243

Unconventional 374 170 204

Net imports (bcm) 14 77 119 143 262 -143

Imports as a share of demand 12% 24% 20% 51% 57% -37%

Share of gas in the energy mix 4% 8% 13% 7% 10% 3%

Total energy-related CO2 
emissions (million tonnes) 7 503 9 792 10 449 9 877 10 695 -246

* Difference between the Golden Rules Case and the Low Unconventional Case. ** Investment figures are 
in billions of year-2010 dollars.

In the Low Unconventional Case, output of shale gas and coalbed methane grows much 
less rapidly, reaching a combined level of less than 115  bcm in 2035 (Table  3.5). The 
reduced availability of local gas supplies increases the country’s dependence on imports 
at higher average prices. Less ambitious policies to boost demand, coupled with higher 
prices, lead to slower growth in Chinese gas demand, as the Chinese authorities seek to 
limit the country’s reliance on imports. Demand reaches only 455  bcm by 2035, almost 
one-quarter lower than in the Golden Rules Case. The share of gas in total primary energy 
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is correspondingly markedly lower: 10% versus 13% in 2035. This results in increased 
dependence on coal and, to a lesser extent, on nuclear and renewables.

Rapid growth in unconventional gas would greatly strengthen China’s energy security and 
have major implications for international gas trade. In the Golden Rules Case, imports 
amount to nearly 120 bcm in 2035, about 20% of the country’s gas demand, compared with 
just over 260 bcm or nearly 60% of demand in the Low Unconventional Case. The overall 
cost of gas imports is correspondingly much lower, by 60%, in the Golden Rules Case. 
Lower import volumes would improve China’s negotiating position vis-à-vis its suppliers, 
including producers of LNG, existing suppliers by pipeline from Central Asia and Myanmar, 
and Russia, which has the potential to become a major supplier of gas to China but 
whose opportunities to do so would be much more limited in the Golden Rules Case. The 
uncertainty surrounding the prospects for China’s unconventional gas industry may favour 
investment in LNG over pipeline projects (and, in both cases, lessen the attractiveness of 
large long-duration supply contracts) as China may seek more flexibility to allow for gas-
import needs turning out to be smaller than expected. 

Europe
Resources and production

Europe’s unconventional gas resources have attracted considerable interest in the last few 
years, although in practice the push to develop this resource varies considerably by country, 
depending on the mix of domestic fuels and imports and perceptions of the risks to energy 
security and the environment. Attention to unconventional gas focused initially on coalbed 
methane and tight gas, but has now switched to shale gas. Recoverable resources of shale 
gas are believed to be large, though how much can be recovered economically remains 
uncertain. 

Europe’s shale gas resources are found in three major areas that contain multiple basins, 
sub-basins and different plays: from eastern Denmark and southern Sweden to northern 
and eastern Poland (including Alum shales in Sweden and Denmark, and Silurian shales 
in Poland); from northwest England, through the Netherlands and northwest Germany 
to southwest Poland; and from southern England through the Paris Basin in France, the 
Netherlands, northern Germany and Switzerland (Figure  3.7). Poland and France are 
thought to have the largest shale-gas resources, followed by Norway, Ukraine, Sweden, 
Denmark and the United Kingdom. Potential coalbed methane resources in Europe are 
reasonably well established and are significant in some countries, notably in Ukraine, the 
United Kingdom, Germany, Poland and Turkey.
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Figure 3.7 ⊳	 Major unconventional natural gas resources in Europe
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As yet, there is no large-scale production of unconventional gas in Europe. How soon it 
will begin and how quickly it will grow remain to be seen, though there are several factors 
favouring development. The European Union is the second-largest regional gas market in 
the world, with demand amounting to around 550 bcm in 2010, and it is set to become 
increasingly dependent on imports as indigenous production of conventional gas continues 
to decline and demand continues to expand. The region has a well-established pipeline and 
storage network (albeit not as densely developed as in the United States). And, crucially, 
natural gas prices are high compared with North America, adding to the attractiveness of 
developing new indigenous gas resources. 

But there are above-ground factors that are likely to impede rapid growth in unconventional 
gas production, the most significant of which is the high population density in many of 
the prospective areas. This increases the likelihood of opposition from local communities, 
especially in areas with no tradition of oil and gas drilling. State ownership of oil and gas 
rights can also reduce the incentives for communities to accept development of local 
unconventional gas resources, compared with parts of the United States where these rights 
are held by private land-owners.

The European regulatory framework

Most regulations applicable to upstream oil and gas in the European Union are determined 
at the national level: member states define their own energy mix and make decisions 
concerning domestic resource development. At the EU level, there is a common set of rules 
(under the Hydrocarbons Licensing Directive) to secure transparent and non-discriminatory 
access to the opportunities for exploration, development and production of hydrocarbons, 
but the main area in which Europe-wide regulation applies is environmental protection, 
including: 

	 Water protection (Water Framework Directive, Groundwater Directive and Mining 
Waste Directive).

	 The use of chemicals (under REACH regulation, administered by the European 
Chemicals Agency).

	 The protection of natural habitats and wildlife.

	 Requirements to carry out an environmental impact assessment, under general 
environmental legislation.

	 Liability for upstream operators to incur penalties for environmental damage (under 
the Environmental Liability Directive and the Mining Waste Directive). 

Public concerns about the environmental risks associated with hydraulic fracturing 
have prompted calls for new regulation on aspects of this practice, often based on the 
“precautionary principle” that is a statutory requirement in European Union law. A 2011 
report commissioned by the Directorate General for Energy of the European Commission 
found that European environmental legislation applies to all stages of unconventional 
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gas developments. It also concluded that, both on the European level and at the national 
level (in the countries studied), there are no significant gaps in the legislative framework 
when it comes to regulating shale gas activities at the present level of intensity (Philippe & 
Partners, 2011). However, it did suggest that the situation might change if activities were to 
expand significantly and did suggest some improvements to national legislation, including 
procedures to include local citizens at earlier stages in the impact assessment process. 

Additional assessments of various aspects of unconventional gas are currently being carried 
out within the European Commission. These include: a study on the economics of shale 
gas, by the Joint Research Centre in collaboration with the Directorate General for Energy; 
a study on methane emissions, by the Directorate General for Climate Action; and an 
assessment of the adequacy of the current regulatory framework to ensure an appropriate 
level of protection to the environment and to human health, by the Directorate General 
for the Environment. On the basis of the results of these assessments, the Commission will 
decide whether to put forward regulatory proposals specifically related to unconventional 
gas. 

The European Parliament has also taken up the debate about various aspects of shale 
gas development. An assessment presented to the Committee on Environment, Public 
Health and Food Safety (European Parliament, 2011a) found that the current regulatory 
framework concerning hydraulic fracturing has a number of deficiencies, most importantly, 
the high threshold before an environmental impact assessment is required6; it also 
called for the coverage of the Water Framework Directive to be re-assessed focusing on 
the possible impacts of hydraulic fracturing on surface water and urged consideration 
of a ban on the use of toxic chemicals. A draft report to the same committee, prepared 
by a Polish parliamentarian, is more supportive of unconventional gas development 
(European Parliament, 2011b), while recognising the need to address concerns about 
the environmental effects of extraction. A separate draft report, focusing on the energy 
and industrial implications of shale gas development, is also under consideration by the 
Parliament’s Committee on Industry, Research and Energy (European Parliament, 2012). 

Poland

Medium-term prospects for unconventional gas production in Europe appear brightest 
in Poland, where exploratory drilling for shale gas is most advanced and where above-
ground factors are generally less of an obstacle to development than elsewhere. Optimism 
about Poland’s shale gas potential stems from the size of its resources, although these are 
still subject to considerable uncertainty. The US EIA put technically recoverable resources 
in Poland at 5.3  tcm (US DOE/EIA, 2011), while an assessment by the Polish Geological 
Institute (with the support of the United States Geological Survey), studying archive data 
on the Baltic, Podlasie and Lublin Basins, estimated recoverable resources at 346 bcm to  

6.  The Environmental Impact Assessment Directive does though include an obligation to screen for possible 
adverse environmental effects in projects which fall below any relevant thresholds.
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768  bcm (PGI, 2012). The large difference is explained primarily by differences in 
methodologies between the two studies; the range of resource assessments should 
narrow as more data become available from exploratory drilling.

As described in Chapter 2, the model used for the projections in this report relies on the 
Rogner and ARI estimates for shale gas resources, which are so far the only assessments 
that apply a consistent methodology across a large enough number of countries. If 
actual resources in Poland are significantly lower than assumed, inevitably this would 
have a considerable impact on our projections, all else being equal. This is illustrated in 
Figure 3.8, which shows projections for shale gas production in Poland for a higher and 
lower recoverable resource estimate, respectively, based on the ARI estimate of 5.3  tcm 
and using a mid-range figure of 0.55 tcm from the Polish Geological Institute estimate.

Figure 3.8 ⊳ � Impact of different resource assessments on projected shale 
gas production in Poland
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Poland has one of the oldest petroleum industries in the world and has been producing oil 
and gas from conventional reservoirs since the 1850s, though production has fallen to low 
levels over recent decades. Interest in shale and tight gas began towards the end of the last 
decade. A series of exploration licensing rounds has led to a large influx of international 
companies, with a number of firms that are already active in the United States – including 
ExxonMobil, Chevron, Eni, Talisman and Marathon – buying up drilling rights, either directly 
or through joint ventures (although the national oil and gas company, PGNiG, holds the 
most licences). Over 100 exploration licences, most of which have a duration of five years, 
have so far been issued, covering most of the prospective shale gas areas. 

Early results from exploration drilling have put something of a damper on the initial hopes 
for a rapid take-off in production. Since PGNiG completed Poland’s first shale well in 2009, 
18 exploration wells have been drilled, with a further 14 underway and 39 planned (as 
of March 2012). Flow rates were low in the few wells for which data have been made 
public, with some reportedly proving unresponsive to normal drilling and well-completion 
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techniques. ExxonMobil has announced that two wells that it drilled and completed in 2011 
are not commercially viable, though it is looking into whether different fluids, proppants 
or pumping techniques might produce better results. ExxonMobil and other companies 
continue to drill new wells.

The Polish government has been very supportive of drilling for shale and tight gas, 
reflecting the potentially large economic and energy security benefits that could be gained 
from supplementing the country’s dwindling resources of conventional gas and reducing 
its heavy dependence on gas imports from Russia. Gas demand is expected to grow in the 
coming years, particularly for power generation, as older, low-efficiency coal-fired stations 
close. Although shale gas production costs are likely to be above those in the United States, 
high oil-indexed prices for imported gas should make shale developments profitable. 
Relatively low population density in the main basins as well as a history of oil and gas 
activities may favour public acceptance.

The regulatory framework applicable to unconventional gas development is changing 
with the prospect of commercial production. Until the recent arrival of foreign firms, the 
upstream sector was dominated by PGNiG, which ensured that the government captured 
a large part of any rent on hydrocarbons production and reduced the need for explicit 
regulation for that purpose. The legislative system for the upstream is now being adjusted 
to the reality of many new market entrants and participants, including changes to the 
licensing system and the fiscal framework for upstream activity.

A new Geological and Mining Law came into force in Poland at the start of 2012, which 
clarifies some administrative and legal questions regarding the development of Poland’s 
unconventional gas potential. The most significant change was that licences for exploration 
of hydrocarbons in Poland can now be granted only through tenders (exploration 
licences issued over the last five years were on a first-come, first-served basis). Since 
most prospective gas exploration acreage in Poland has already been awarded, the new 
regulations will become more significant when the first production licences are sought. The 
new law also modifies the system of mineral rights ownership, more clearly defining the 
division between state rights and those of landowners, but shale gas, as a strategic mineral, 
remains the exclusive property of the state.

France

With resources almost as large as those in Poland, France was expected to be one of the 
first European countries to produce unconventional gas commercially. Shale gas potential is 
primarily in two major shale basins: the Paris Basin and the Southeast Basin. The Southeast 
Basin is considered to be the more prospective, in view of the low depth of parts of the 
basin, possible liquids content and low levels of clay. The government had issued three 
licences for shale gas exploration drilling in the Southeast Basin but, in May 2011, in the 
face of a strong public opposition over the potential environmental impacts of hydraulic 
fracturing, the government announced a moratorium on its use and later prohibited it by 
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law. Two firms that held licences – France’s Total and the US-based Schuepbach Energy 
– subsequently had their licences cancelled. Schupebach Energy had maintained their 
intention to use hydraulic fracturing, whereas Total had submitted a report where they 
committed not to use it. A third company that committed not to use hydraulic fracturing 
has had its permit maintained.

Public opposition was linked to the fact that part of the prospective basin underlay scenic 
regions that are heavily dependent on the tourism industry. Resentment was exacerbated 
by a lack of public consultation: under French mining laws, public consultation is required 
only at the production stage and not at the exploration stage. Revision of the mining code 
is under consideration to include earlier public consultation.

A report was commissioned jointly by the Ministry of Ecology and Sustainable Development 
and the Ministry of Industry, Energy and Economy to provide information on shale gas 
and light tight oil, the environmental concerns surrounding their development and the 
applicability of existing hydrocarbon regulation in France to this new potential energy 
source. A preliminary report recommended some drilling in France, under strict controls, 
while more information was gathered about the impact of hydraulic fracturing elsewhere 
in Europe and the United States (Leteurtrois, 2011). However, the final report was not 
issued because the ban on hydraulic fracturing was voted in the meantime.

In France, as in some other countries, the debate around shale gas developments became 
a proxy for a much broader question about the approach to sustainable energy policy. 
In a separate report prepared for the National Assembly, the co-authors did not share a 
common vision of France’s future energy mix, writing two separate conclusions (Gonnot, 
2011). One concluded that more study was required to understand the extent of the 
country’s resource and the technologies to safely develop it, with a view to then taking 
a decision on whether to proceed developing the resources. The second asserted that 
the development of new hydrocarbon resources has no place in a national energy policy 
striving to meet agreed climate change objectives.

The Paris Basin has a long history of conventional oil production. In the early 1980s, high 
hopes were held that significant volumes might be found, but exploration turned out to be 
disappointing and production has not exceeded a few thousand barrels per day. Production 
is mostly from the rural Seine et Marne Région, southeast of Paris, where several hundred 
wells have been drilled. Some geologists have argued recently that the reason large oil 
fields have not been discovered is that the hydrocarbons have not been expelled from the 
source rocks. Indeed, there are indications from wells that have intercepted some of the 
shales that they may be hydrocarbon bearing, probably mostly light tight oil, with some 
shale gas. Estimates of oil-in-place vary from 1 to 100 billion barrels, though the fraction 
which might be technically and economically recoverable is not known.

In the Golden Rules Case, we assume a reversal of the ban on hydraulic fracturing. Shale 
gas production rises after 2020 to reach 8  bcm in 2035, which would allow France to 
exceed its peak gas production from the end of the 1970s. At the same time, light tight 
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oil production could reach several tens of thousands of barrels per day. Some of the 
resources, located in sensitive areas, are likely to remain barred from development but, 
if productivity can be established, there should be enough resources in other areas to 
sustain such production.

Other EU member countries

There has been a good deal of discussion about unconventional gas prospects in several 
other EU member countries, but little exploration activity as yet. Most of the wells that 
have been drilled are for coalbed methane. There appears to be significant potential for 
shale gas development in several other EU member countries, notably in Sweden, the 
United Kingdom and Germany.

Sweden’s shale gas resources are located in the Scandinavian Alum shale, which extends 
from Norway to Estonia and south to Germany and Poland. The Alum shale has been mined 
for oil shale for many decades in central and southern Sweden (and in Estonia), where it is 
close to the surface. It has the advantages of high organic content and thermal maturity and 
is relatively shallow, with depths averaging less than 1 200 metres. But it lacks overpressure 
and contains a high concentration of uranium, which poses problems for water treatment 
and recycling. Shell has been most active in assessing the shale, having drilled three 
exploration wells in the Skåne region of southern Sweden, but it ceased operations when 
they proved to be dry. Opposition to hydraulic fracturing had delayed the programme and 
threatens to deter renewed exploration activity.

In the United Kingdom, a main shale play is the Bowland shale formation (in the Northern 
Petroleum System), which is relatively shallow, with an average depth of only 1 600 metres, 
and with certain areas rich in liquids. Cuadrilla Resources has drilled two exploration 
wells, one of which encountered gas. It subsequently announced that the formation could 
hold as much as 5.7 tcm (200 trillion cubic feet) of technically recoverable gas. However, 
operations have been suspended as a result of two small earthquakes that occurred after 
hydraulic fracturing was carried out. A report commissioned by Cuadrilla concluded that it 
is “highly probable” that the fracturing and subsequent earthquakes were linked, although 
future occurrences should be rare given the unique local geology at the well site (de Pater 
and Baisch, 2011). The UK Department of Energy and Climate Change commissioned an 
independent report on the causes of the earthquakes and appropriate means of mitigating 
seismic risks (Green, Styles and Baptie, 2012). It recommended cautious continuation of 
Cuadrilla’s hydraulic fracturing operations and several safety provisions, including greater 
use of micro-seismic monitoring and new safeguards that would lead to a suspension of 
operations in case of seismic activity. At the time of writing, the government was awaiting 
comments on this report before making any decision regarding additional hydraulic 
fracturing.

The UK government appears to be supportive of continuing shale gas exploration and 
development. A parliamentary inquiry in 2011 found no evidence that hydraulic fracturing 
poses a direct risk to underground water aquifers, provided the drilling well is constructed 
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properly, and concluded that, on balance, a moratorium on shale gas activity in the United 
Kingdom is not justified or necessary at present (UK Parliament, 2011). Nonetheless, the 
inquiry urged the UK Department of Energy and Climate Change to monitor drilling activity 
extremely closely in its early stages in order to assess its impact on air and water quality.

Germany has shale resources, estimated at 230  bcm, in the large North Sea-German 
basin, which extends from Belgium to Germany’s eastern border along the North Sea 
coast. Several companies have acquired exploration licences and ExxonMobil has drilled at 
least three exploratory shale gas wells in Lower Saxony as part of a ten-well programme. 
Germany has a history of tight gas production with relatively large hydraulic fracturing 
treatments having been common practice for the last 20 years. As in France, there has 
been strong opposition to shale gas drilling on environmental grounds, but attention to the 
need for indigenous energy sources, including unconventional gas, has been intensified by 
a decision to phase out nuclear power.

Shale gas exploration efforts are advancing elsewhere in the European Union: there are 
plans by OMV to drill several test wells in Austria in the next two years; in Lithuania, 
exploration licences were being tendered at the time of writing. Bulgaria and Romania 
have awarded shale gas exploration licences, but these countries have experienced strong 
public opposition over fears about the environmental impact of hydraulic fracturing and, 
in Bulgaria, this has led to parliament voting in early 2012 to ban the use of the technique, 
making it the second country in the European Union to do so.

EU projections and implications

Against a backdrop of declining indigenous production and a policy priority to diversity 
sources of gas supply, the European Union has reasons to be interested in exploiting 
its domestic unconventional gas potential. At the same time, environmental concerns 
could easily delay or derail development. In our projections in the Golden Rules Case, 
unconventional gas production is slow to take off but accelerates in the longer term, as 
confidence grows in the effective application of the Golden Rules in the most prospective 
countries. In our projections, unconventional production in the European Union climbs to 
just over 10 bcm by 2020, but it grows more rapidly thereafter, reaching almost 80 bcm 
by 2035 (Table  3.6). Shale gas accounts for the bulk of this output. Unconventional gas 
contributes almost half of the European Union’s total gas production and meets just over 
10% of its demand by 2035. As a result, even though there are not dramatic shifts in the 
trade balance, as seen in the United States, growth in unconventional production offsets 
continued decline in conventional output from 2020 (Figure 3.9).

Rising unconventional gas production (both in Europe and worldwide) helps to restrain 
the rise in gas prices in Europe, which – together with additional policies to encourage 
gas use – drives up gas demand. As a result, the upward trend in net gas imports into the 
European Union continues throughout the projection period, reaching 480 bcm in 2035, 
or three-quarters of total demand (compared with 345 bcm, or more than 60%, in 2010). 
In the Low Unconventional Case, in which there is very little commercial unconventional 
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production before 2035, European Union net gas imports are 30 bcm higher in 2035 than in 
the Golden Rules Case (and gas import prices are higher). Consequently, the cost of those 
imports reaches about $250 billion in 2035 (in year-2010 dollars) – an additional import bill 
of almost $60 billion relative to Golden Rules Case. 

Table 3.6 ⊳ � Natural gas indicators in the European Union by case
Golden Rules 

Case
Low Unconventional 

Case Delta*

2010 2020 2035 2020 2035 2035

Production (bcm) 201 160 165 139 84 81

Unconventional 1 11 77 0 0 77

Share of unconventional 1% 7% 47% 0% 0% 47%

Cumulative investment in 
upstream gas, 2012-2035** 434 235 199

Unconventional 181 - 181

Net imports (bcm) 346 432 480 423 510 -30

Imports as a share of demand 63% 73% 74% 75% 86% -11%

Share of gas in the energy mix 26% 28% 30% 26% 28% 2%

Total energy-related CO2 
emissions (million tonnes) 3 633 3 413 2 889 3 414 2 873 16

* Difference between the Golden Rules Case and the Low Unconventional Case. ** Investment figures are 
in billions of year-2010 dollars.

Figure 3.9 ⊳ � Natural gas balance in the European Union in the Golden Rules 
Case*
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Ukraine

Ukraine has considerable unconventional gas potential in the form of coalbed methane in 
the main coal-mining areas of eastern Ukraine and in two shale gas basins: a portion of the 
Lublin Basin, which extends across from Poland, and the Dnieper-Donets Basin in the east. 
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Coalbed methane resources are estimated at close to 3 tcm. Technically recoverable shale 
gas resources in Ukraine are 1.2  tcm, around one-third less than remaining recoverable 
resources of conventional gas. The Ukrainian section of the Lublin Basin is large and 
reportedly has higher average total organic content than the Polish section and lower 
average depth. The Dnieper-Donets Basin – which currently provides most of the country’s 
conventional oil, gas and coal production – also has high organic content, but is deeper.

The government is keen to develop new sources of gas in order to reduce the country’s 
heavy dependence on imports from Russia – it has set a target of producing 3 to 5 bcm of 
unconventional gas by 2020. Coalbed methane is the most likely source of unconventional 
production growth in the short to medium term, but, if the conditions are in place, shale 
gas also offers considerable promise. A new tender for two large shale gas blocks in both 
basins is underway, offering foreign companies the opportunity to bid for the right to enter 
a production-sharing contract. Naftogaz, the state-owned oil and gas company, signed 
a memorandum of understanding with ExxonMobil in 2011 to co-operate on shale gas 
exploration; other companies are also interested in Ukraine’s potential. An earlier shale 
gas tender led to some exploration drilling. Hawkley, an independent Australian company, 
drilled a shale gas well in the Dnieper-Donets basin in 2011. Kulczyk Oil, an international 
upstream company, announced in November 2011 that it had successfully completed the 
hydraulic fracturing of a well in a previously non-commercial zone of the Dnieper-Donets 
basin, yielding 65 thousand cubic metres per day (2.3 mcf/d) of gas and condensates. 

In the Golden Rules Case, production of unconventional gas in Ukraine reaches 3  bcm 
in 2020, before ramping up to around 20 bcm in 2035. The Golden Rules Case assumes, 
importantly, that supportive measures are adopted to facilitate investment in the gas 
sector: Ukraine has a poor investment climate and upstream conventional gas output 
currently stands at around 20 bcm per year.

Australia
Resources and production

As a sizeable producer of coalbed methane (known as coal seam gas), Australia is one 
of only a handful of countries already producing commercial volumes of unconventional 
gas. Its large resources of shale gas, tight gas and coalbed methane hold the promise of 
continuing strong growth in unconventional gas output in the long term. The attraction of 
unconventional gas developments is heightened by the fact that Australia’s conventional 
gas resources, while sizeable, tend to be offshore, expensive to develop and far from 
national markets. 

More is known about the size of the country’s coalbed methane resources than about the 
other two categories of unconventional gas. According to official estimates, demonstrated 
economically recoverable coalbed methane resources were 930 bcm at the end of 2010 
(Geoscience Australia, 2012). The estimates of these resources have grown substantially 
in recent years, as exploration and development has expanded. Nearly all current reserves 
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are contained in the Surat (69%) and Bowen (23%) basins in central Queensland, with 
almost all the balance in New South Wales (Figure 3.10).

Figure 3.10 ⊳ �Major unconventional natural gas resources in Australia
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Commercial production of coalbed methane began in 1996 in eastern Australia and has 
grown sizeably over the last few years. Output reached 5 bcm in 2010, accounting for about 
15% of total Australian gas consumption. Virtually all output comes from the Surat and 
Bowen basins, with small volumes also now produced from the Sydney Basin. The rapid 
growth of the unconventional gas industry has been supported by strong demand growth in 
the eastern Australian market, reflecting in part the Queensland government’s energy and 
climate policies, including a requirement that 13% of power generation in the state be gas-
fired by 2005 and 15% by 2010. The abundance of coalbed methane has led to a number 
of LNG-export projects being proposed in Queensland; and three large plants to be sited at 
the port of Gladstone are under construction: Queensland Curtis LNG (BG), Gladstone LNG 
(Santos), and Australia Pacific LNG (Origin and ConocoPhillips), with a fourth –  Arrow LNG 
(Shell/PetroChina) – at an advanced stage of development. Total investment in the three 
projects underway is projected to be some $40 billion; their capacity of 29 bcm more than 
doubles current national export capacity. However, policy uncertainty and public reaction 
to the potential environmental impacts of coalbed methane production has slowed 
upstream development, particularly in New South Wales.
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Remaining recoverable resources of tight gas in Australia are estimated at 8  tcm. The 
largest resources of these are in low permeability sandstone reservoirs in the Perth, 
Cooper and Gippsland Basins. Tight gas resources in these established conventional gas-
producing basins are located relatively close to existing infrastructure and are currently 
being considered for commercial exploitation.

Although shale gas exploration is in its infancy in Australia, exploration activity has 
increased significantly in the last few years. Australia is estimated to contain 11  tcm of 
remaining recoverable shale gas resources. These are found predominately in the Cooper, 
Maryborough, Perth and Canning basins. The first vertical wells specifically targeting 
shale gas were drilled in the Cooper Basin in early 2011 and significant exploration is now 
underway in this basin and, to a lesser extent, in other promising areas. But a boom in 
shale gas production is unlikely in the near future because of logistical difficulties and the 
relatively high cost of labour and hydraulic fracturing. 

Regulatory framework

Under the existing regulatory framework governing the upstream hydrocarbons sector in 
Australia, powers and responsibilities are shared between the federal, state and territory 
governments and local authorities. The states hold rights over coastal waters from the 
coast line to the three-mile limit and joint regulatory authority over the federal waters 
adjacent to each state and the Northern Territory. In addition to various petroleum and 
pipelines laws, there is an extensive body of legislation governing upstream petroleum 
activities, covering such aspects as the environment, heritage, development, native title 
and land rights, and occupational health and safety; most are not specific to the oil and 
gas sector. A number of bodies across all levels of government have a role in regulating 
upstream petroleum activities.

Under Australian law, hydrocarbon resources are owned by the state (at federal, state 
or territory level) on behalf of the community, and governments at all levels have a 
“stewardship” role in petroleum resource management (AGPC, 2009). Farmers or graziers 
may hold freehold or leasehold title to land, but generally do not have rights to mineral or 
petroleum resources – these are subject to petroleum tenure rights granted by the state 
or territory governments. Underlying native title can coexist with other land title rights. 
In general, landowners have no right to refuse access to the petroleum tenure holder for 
petroleum operations; but they do have a claim to compensation for the impact of those 
operations. Approvals, generally a state or territory responsibility, are required to construct 
petroleum pipelines and facilities such as LNG trains. Landowners do not have the incentive 
of ownership of mineral resources to facilitate surface access to unconventional gas projects, 
but state and territory governments do have an incentive to promote development, as they 
can benefit from any taxes or royalties levied on production.
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Within each jurisdiction, environmental regulation of upstream activities can include 
hydrocarbon-specific environmental approvals, though there are few rules specific 
to unconventional gas. The main federal regulations are the Offshore Petroleum and 
Greenhouse Gas Storage Act 2006 and the Environment Protection and Biodiversity 
Protection Act 1999 (EPBC Act). Under the EPBC Act, if a project affects matters of national 
environmental significance, it requires federal approval. LNG projects in Queensland, 
including their upstream coalbed methane operations, trigger the need for such federal 
approval. In general, an environmental impact assessment must be carried out in advance 
of all upstream projects that are likely to have a significant impact on the environment.

The rapid expansion of the coalbed methane industry has led to increased public concern 
over access issues and the potential environmental risks, particularly the drawdown 
and contamination of aquifers and groundwater and problems arising from the disposal 
of produced water. As described in Chapter 1, the techniques used in coalbed methane 
production differ significantly from those for shale gas; in particular there is a need to 
remove large amounts of water from the coal formation. This causes concern that those 
already drawing water from the same formations will be adversely affected and that the 
disposal of the large water volumes involved in coalbed methane production will not be 
properly handled. Given the semi-arid conditions in the producing areas, evaporation or 
discharge of even suitably-treated formation water to existing watercourses may not be 
appropriate. This has led to delays in issuing approvals for some upstream developments. 

The federal government announced in 2011 that all future coalbed methane and other 
coal projects would come under increased environmental scrutiny. A new, well-resourced 
and independent scientific committee, established under the EPBC Act, will evaluate most 
future projects prior to approval to ensure that they do not pose a hazard to underground 
and surface water sources. Protocols are being developed at federal and state level to 
determine which projects will be referred to this committee. In Queensland, where most 
coalbed methane activity is concentrated, new proposals to manage the impact of water 
extraction on groundwater are being finalised. They provide for cumulative assessment 
of the impacts on groundwater resources in defined management areas. This work will 
be based on a major groundwater flow model, designed to predict impacts on aquifers, 
as well as new monitoring arrangements. A major report, the Surat Underground Water 
Impact Report, is expected to be published for public consultation by the Queensland 
Water Commission in mid-2012. A key principle in the regulatory approach is that 
petroleum operators must make good any impairment of water supply that they cause and 
that any consequence of underestimating that risk should lie with the operator, not the 
water source owner or the state government. The upstream industry has argued that the 
new regulations will hamper the development of the country’s nascent unconventional 
gas sector. In New South Wales, where regulatory activity is less advanced, the state 
government has introduced a moratorium on hydraulic fracturing while it considers new 
regulation.
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In December 2011, energy and resources ministers at both federal and state levels agreed 
to develop a nationally harmonised framework for coalbed methane regulation to address 
the following areas of community concern:

	 Water management.

	 The need for a multiple land-use framework, meaning measures to reconcile the 
ability for extraction of coalbed methane with existing and potential agricultural or 
pastoral uses.

	 The application of best practice standards to production activities.

	 Minimising environmental and social impacts.

The objective is to achieve measures in these areas which maximise transparency and 
generate greater public confidence in the effective regulation of the industry while 
supporting commercial extraction of coalbed methane.

Projections and implications

The prospects for unconventional gas production in Australia hinge to a large degree on 
whether policy-makers and the industry itself can sustainably manage the associated 
environmental risks on a basis that retains public confidence in the outcomes. In the Golden 
Rules Case, this is achieved, with unconventional gas output continuing to expand rapidly, 
reaching about 60 bcm by 2020 and 110 bcm in 2035. Coalbed methane contributes almost 
all of this increase, with shale gas production growing more slowly. As a result, total gas 
production more than triples, with unconventional gas accounting for more than half of 
gas output after 2020 (Figure 3.11). The projected level of coalbed methane production 
for 2020 assumes that the four LNG-export projects in Queensland proceed as planned 
and enter the market before the large increase in unconventional production in other 
countries, notably China, gains momentum. 

Figure 3.11 ⊳ �Natural gas balance in Australia in the Golden Rules Case*
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Gas production is driven primarily by exports, based on both conventional and 
unconventional sources, which rise by 100 bcm in the Golden Rules Case. Exports reach 
80  bcm in 2020, based on developments under construction, and continue to grow 
throughout the projection period. The value of those exports increases seven-fold to just 
over $55 billion in 2035 (in year-2010 dollars).

In both the Golden Rules and Low Unconventional Cases, east coast Australian domestic 
prices rise towards the export netback price (the delivered export price less liquefaction 
and transport costs) from their current very low levels. The high capital costs of Australian 
LNG plants meaning that these netback levels are likely to be at least $5 to $6/MBtu 
below the price of LNG delivered to Asian markets. In the Golden Rules Case, Australia’s 
gas consumption nonetheless continues to expand on the back of government policies 
to encourage switching to gas for environmental reasons (including the recently agreed 
carbon trading scheme).

In the Low Unconventional Case, coalbed methane production expands at a much slower 
pace on the assumption of bigger hurdles to development of these resources, while there 
is no shale gas production at all. In 2035, unconventional gas production falls to around 
35 bcm – this is 75 bcm lower than in the Golden Rules Case. The higher international price 
environment in the Low Unconventional Case means that the upward pull on Australian 
domestic prices is stronger.

Gas exports still reach more than 110 bcm in the Low Unconventional Case, as investment 
is shifted to LNG projects based on conventional gas. In this case, the needs of importing 
countries are much increased and so any gas exporter with the capacity to export has an 
incentive to do so; this is certainly the case for Australia, with its conventional resources 
and existing export infrastructure, even if these conventional resources are more costly to 
develop. Export earnings are even higher in this case, as international gas prices are higher. 
Unsurprisingly, Australia would stand to benefit from restrictions on unconventional gas 
developments in other parts of the world, especially in Asia-Pacific, as it is able to expand 
its own production of conventional and unconventional gas.
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Annex A

Units and conversion factors
This annex provides general information on units and general conversion factors. 

Units

Emissions ppm parts per million (by volume)
Gt CO2-eq gigatonnes of carbon-dioxide equivalent  

(using 100-year global warming potentials for 
different greenhouse gases)

kg CO2-eq kilogrammes of carbon-dioxide equivalent
gCO2/kWh grammes of carbon dioxide per kilowatt-hour

Energy toe tonne of oil equivalent
Mtoe million tonnes of oil equivalent 
Mt LNG million tonnes of liquefied natural gas
MBtu million British thermal units
MJ megajoule (1 joule x 106)
GJ gigajoule (1 joule x 109)
TJ terajoule (1 joule x 1012)
kWh kilowatt-hour
MWh megawatt-hour 
GWh gigawatt-hour
TWh terawatt-hour

Gas mcm million cubic metres
bcm billion cubic metres
tcm trillion cubic metres
mcf million cubic feet
bcf billion cubic feet
tcf trillion cubic feet

Mass kg kilogramme (1 000 kg = 1 tonne)
kt kilotonnes (1 tonne x 103)
Mt million tonnes (1 tonne x 106)
Gt gigatonnes (1 tonne x 109)
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Monetary $ million  1 US dollar x 106

$ billion  1 US dollar x 109

$ trillion  1 US dollar x 1012

Oil b/d barrels per day
kb/d thousand barrels per day
mb/d million barrels per day

Power W watt (1 joule per second)
kW kilowatt (1 watt x 103)
MW megawatt (1 watt x 106)
GW gigawatt (1 watt x 109)
TW terawatt (1 watt x 1012)

General conversion factors for energy

Convert to: bcm bcf Mt LNG TJ GWh MBtu Mtoe

From: multiply by:

bcm 1 35.315 0.7350 4.000 x 104 11.11 x 103 3.79 x 107 0.9554

bcf 2.832 x 10-2 1 2.082 x 10-2 1.133 x 103 3.146 x 102 1.074 x 106 2.705 x 10-2

Mt LNG 1.360 48.03 1 54 400 15 110 5.16 x 107 1.299

TJ 2.5 x 10-5 8.829 x 10-4 1.838 x 10-5 1 0.2778 947.8 2.388 x 10-5

GWh 9.0 x 10-5 3.178 x 10-3 6.615 x 10-5 3.6 1 3 412 8.6 x 10-5

MBtu 2.638 x 10-8 9.315 x 10-7 1.939 x 10-8 1.0551 x10-3 2.931 x 10-4 1 2.52 x 10-8

Mtoe 1.047 36.97 0.7693 4.1868 x 104 11 630 3.968 x 107 1

Notes
	 Gas volumes are measured at a temperature of 15°C and a pressure of 

101.325 kilopascals.

	 The Gross Calorific Value (GCV) of gas is defined as 40.0  MJ/cm for conversion 
purposes in the table above. 

	 The global average GCV varies with the mix of production over time, in 2009 it was 
38.4 MJ/cm.

	 1 Mtoe is equivalent to 107 gigacalories.
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energy sector all need WEO-2012. It presents authoritative projections of 
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the outlook for unconventional gas, building on the recent WEO special
report on the Golden Rules for a Golden Age of Gas. Global energy demand, 
production, trade, investment and carbon dioxide emissions are broken down
by region or country, by fuel and by sector.

Special strategic analyses cover: 

the Iraqi energy sector, examining its role both in satisfying the country’sr
internal needs and in meeting global oil demand;

what unlocking the potential for energy efficiency could do, country by y
country and sector by sector, for oil security, the climate and the economy;

the cost of delaying action on climate change, as more and more carbon-
emitting facilities are built;

the water-energy nexus, as water resources become increasingly stressed
and access more contentious;

measures of progress towards providing universal access to modern 
energy services; and

recent developments in subsidies for fossil fuels and renewable energy.yy

No-one can be sure today how the future energy system might evolve; but 
many decisions cannot wait. The insights of WEO-2012 are invaluable to those
who must make them. 
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